首页> 外文学位 >Symmetric singular value decomposition of complex symmetric matrices.
【24h】

Symmetric singular value decomposition of complex symmetric matrices.

机译:复杂对称矩阵的对称奇异值分解。

获取原文
获取原文并翻译 | 示例

摘要

Complex symmetric matrices arise from many applications, such as nuclear magnetic resonance, complex-value independent component analysis and so on. Singular value decomposition (SVD) is an important matrix decomposition in numerical linear algebra. When the matrix is complex symmetric, it has a special form of SVD, symmetric SVD (SSVD) or Takagi factorization. Exploiting this special form, we can save at least half running time and storage space for computing the SVD. However, LAPACK and Matlab do not support this special structure.; In this thesis, we will show how to compute the SSVD of a complex symmetric matrix efficiently. The new algorithms are at least two times faster than the existing svd subroutine in Matlab and five times faster than the implicit QR method. The speedup of our new methods will be even higher when matrix has some special structures, such as Hankel and sparse.; There are two stages for the SSVD, tridiagonalization and diagonalization. We use the block Lanczos method to tridiagonalize a complex symmetric matrix A, rather than the single-vector Lanczos method. The advantage of the block Lanczos method is to speed up the tridiagonalization through exploiting the memory hierarchy.; The second stage of the SSVD is the diagonalization of a complex symmetric tridiagonal matrix. We propose two methods to implement the diagonalization, divide-and-conquer and twisted factorization methods. The divide and-conquer method computes the SSVD of a big matrix through combining the results obtained from small subproblems via rank one modifications. The twisted factorization method provides an efficient method for computing all the Takagi vectors within O(n2) flops when all the singular values are available. As we know the cost of computing all singular values only via the implicit QR method is O(n 2). Thus, we find a method which computes the SSVD of a complex symmetric tridiagonal matrix in O(n2) totally.; A complex Hankel matrix is symmetric, moreover, the complexity of block Lanczos tridiagonalization method for a Hankel matrix is O( n2 log n), rather than O (n3). Combining the implicit QR method for computing the singular values and the twisted factorization method for computing the singular vectors of a complex symmetric tridiagonal matrix, we obtain an O(n2 log n) SVD algorithm for complex Hankel matrices. To our best knowledge, this is the first fast SVD algorithm for Hankel matrices.
机译:复对称矩阵来自许多应用,例如核磁共振,独立于复数值的成分分析等。奇异值分解(SVD)是数值线性代数中的重要矩阵分解。当矩阵是对称对称时,它具有SVD,对称SVD(SSVD)或Takagi因式分解的特殊形式。利用这种特殊形式,我们可以节省至少一半的运行时间和存储空间来计算SVD。但是,LAPACK和Matlab不支持此特殊结构。在本文中,我们将展示如何有效地计算复杂对称矩阵的SSVD。新算法比Matlab中现有的svd子例程至少快两倍,并且比隐式QR方法快五倍。当矩阵具有Hankel和sparse等特殊结构时,我们的新方法的速度将更高。 SSVD有两个阶段,即三对角化和对角化。我们使用块Lanczos方法对复杂对称矩阵A而不是单向量Lanczos方法进行三对角线化。 Lanczos块方法的优点是通过利用内存层次结构来加速对角线化。 SSVD的第二阶段是复杂对称三对角矩阵的对角化。我们提出了两种实现对角化的方法:分治法和扭曲分解法。分而治之的方法是通过对经过一阶修改的小子问题获得的结果进行合并来计算大矩阵的SSVD。当所有奇异值都可用时,扭曲因式分解方法提供了一种有效的方法来计算O(n2)触发器内的所有Takagi向量。众所周知,仅通过隐式QR方法计算所有奇异值的成本为O(n 2)。因此,我们找到了一种计算O(n2)中复杂对称三对角矩阵的SSVD的方法。复杂的汉克矩阵是对称的,此外,汉克矩阵的块Lanczos三对角化方法的复杂度为O(n2 log n),而不是O(n3)。结合了用于计算奇异值的隐式QR方法和用于计算复杂对称三对角矩阵的奇异向量的扭曲分解方法,我们获得了用于复杂Hankel矩阵的O(n2 log n)SVD算法。据我们所知,这是汉克矩阵的第一个快速SVD算法。

著录项

  • 作者

    Xu, Wei.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号