首页> 外文学位 >Micro and macro-mechanics of the mammalian cochlea.
【24h】

Micro and macro-mechanics of the mammalian cochlea.

机译:哺乳动物耳蜗的微观和宏观力学。

获取原文
获取原文并翻译 | 示例

摘要

This thesis tackles issues in cochlear mechanics both at the microscopic and macroscopic level. Insights gained from the microscopic models are used to mathematically represent the microstructures in a macroscopic model of the cochlea. A comprehensive two-state Boltzmann model is developed for outer hair cell (OHC) motility and is validated by comparing its predictions with experimental findings. Issues with modeling outer hair cells (OHCs) are also discussed and their impact on in vivo behavior of OHCs is explored through simpler OHCs model that retain fidelity over the small voltage and strain variations seen in vivo. Models and parameters for other micro-structures are developed or adapted based on an extensive literature search on their properties. These models for the micro-structures are combined with a two-duct fluid model and cable models for electrical conduction to produce a global mathematical representation of the physiology of the cochlea. The equations are solved using the finite element method.; The parameters used in the model are almost entirely based on guinea pig data. The model predictions match a number of experimental results, both quantitatively and qualitatively. Model results for acoustic simulation and electrical stimuli are presented. Analysis of the model and its results gives fresh insight into the mechanics of the cochlea. Results indicate that the characteristic frequency at a location is determined predominantly by properties of the tectorial membrane, and not of the basilar membrane. This finding contradicts he conventional view in cochlear mechanics. The model is used to reinterpret certain experimental findings in past publications to provide experimental evidence for the new theory. The model results also show that the high frequency voltage roll-off of OHCs does not preclude force production from OHCs in the cochlea. The model necessitates transducer currents that are possibly higher than currents in vivo to achieve physiologically similar amplification. This leaves open the possibility that HB motility might be aiding force production. The model however rules out the possibility of HB force production being the sole active mechanism in the organ.
机译:本文从微观和宏观两个层面解决了耳蜗力学的问题。从微观模型获得的见解用于数学上代表耳蜗宏观模型中的微观结构。针对外毛细胞(OHC)的运动性,开发了一种综合的两态Boltzmann模型,并通过将其预测与实验结果进行比较进行了验证。还讨论了建模外部毛细胞(OHCs)的问题,并通过更简单的OHCs模型探索了它们对OHCs体内行为的影响,该模型保留了在体内看到的较小电压和应变变化下的保真度。基于大量有关其性能的文献搜索,可以开发或修改其他微结构的模型和参数。这些用于微结构的模型与用于导电的两管流体模型和电缆模型相结合,以产生耳蜗生理学的整体数学表示。这些方程使用有限元法求解。模型中使用的参数几乎完全基于豚鼠数据。模型预测在数量和质量上都与许多实验结果相匹配。给出了声学模拟和电刺激的模型结果。对模型及其结果的分析为耳蜗的机理提供了新的见解。结果表明,该位置的特征频率主要由盖膜的特性决定,而不是由基底膜的特性决定。这一发现与他在耳蜗力学中的传统观点相矛盾。该模型用于重新解释过去出版物中的某些实验结果,从而为新理论提供实验证据。模型结果还表明,OHC的高频电压滚降并不排除耳蜗中OHC产生力。该模型需要换能器电流可能高于体内电流才能实现生理上相似的放大。这就留下了HB运动可能有助于力量产生的可能性。但是,该模型排除了HB力产生是器官中唯一活跃机制的可能性。

著录项

  • 作者

    Deo, Niranjan V.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Health Sciences Audiology.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 耳科学、耳疾病;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号