首页> 外文学位 >Controlled mechano-chemical synthesis and properties of nanostructured hydrides in the magnesium-aluminum-hydrogen and magnesium-boron-hydrogen.
【24h】

Controlled mechano-chemical synthesis and properties of nanostructured hydrides in the magnesium-aluminum-hydrogen and magnesium-boron-hydrogen.

机译:镁铝氢和镁硼氢中纳米结构氢化物的受控机械化学合成及其性能。

获取原文
获取原文并翻译 | 示例

摘要

The present work reports a study of mechano-chemical synthesis (MCS) and mechano-chemical activation synthesis (MCAS) of nanostructured hydrides in the Mg-H, Mg-Al-H and Mg-B-H systems by controlled reactive mechanical alloying/milling (CRMA/CRMM) in the magneto-mill Uni-Ball-Mill 5. Structural and desorption properties of the milled powders are examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and desorption test in a Sieverts-type apparatus.; Regardless of the hydride systems, the morphologies of milled Mg-H, Mg-Al-H and Mg-B-H powders after a prolonged milling time can be characterized by dramatic particle size refinement and high tendency to form agglomerates.; The effect of nanograin size and particle size on the DSC desorption temperature of synthesized MgH2 hydride has been studied. A profound effect of the particle size of synthesized MgH2 hydride on its hydrogen desorption DSC temperature has been found. The nanograin (crystallite) size of MgH2 does not seem to have apparent effect on the DSC desorption temperature. The role of both the particle size and the duality of hydride phase in the desorption process is discussed. The nanostructured MgH 2 obtained by CRMM releases hydrogen at ∼332°C, which is ∼60°C lower as compared to the non-milled commercial MgH2 (Tego MagnanRTM) prepared by current manufacturing practices. In the Mg-Al-H system, no successful synthesis of Mg(AlH4) 2 has been achieved by MCS of the nanostructured Mg(AlH4) 2 complex hydride using four starting stoichiometric Mg-2Al mixtures. It is hypothesized that Al(Mg) solid solution in the iv initial stage (∼10h) of CRMA and free Al(s) decomposed from solid solution as the milling time increases the initial stage inhibit the reaction to form Mg(AlH4) 2.; After heating the milled Mg-Al-H powder, the MgH2 hydride in nanometric mixture with Al which does not react with Mg and hydrogen to form Mg(AlH4)2 in the milled Mg-Al-H exhibits a hydrogen desorption temperature at the same range to those of the nanometric MgH 2 with no Al, produced by CRMM.; In contrast to an unsuccessful synthesis in MCS process, a successful synthesis of the Mg(AlH4)2 and 2NaCl mixture by MCAS has been achieved. DSC and TGA analysis show that the decomposition of Mg(AlH 4)2 occurs in a two-step reaction at the temperature ranges of 125-180 and 225-340°C. The MgH2 in nanometric mixture with Al which is obtained after the decomposition of Mg(AlH4)2 releases hydrogen at ∼270°C, which is ∼80°C less than that of the nanometric MgH2 with no Al, produced by CRMM. In the Mg-B-H system, when the Mg-2B mixture is made with the oxidized amorphous boron containing B2O3 then after a prolonged MCS time (200h), only nanometric gamma- and beta-MgH2 hydrides are formed. In contrast, oxide-free amorphous boron in the original Mg-2B mixture prompts the formation of a resulting mixture of nanometric MgB2 and an amorphous phase containing hydrogen. Further annealing of the milled Mg-2B mixtures at ∼100-400°C under ∼4-4.3 MPa of hydrogen for 20-100h does not result in the formation of ternary Mg(BH4)2.; After heating the long-term milled Mg-B-H powder prepared using oxide-free amorphous boron, the MgH2 in the nanometric mixture with MgB 2 does not exhibit lowered desorption temperature, as compared to nanometric MgH2 existing without the presence of second phase. Alternatively, a powder mixture of 2NaBH4 and MgCl2 is used as a starting material to synthesize Mg(BH4)2 hydride. Amorphous Mg(BH 4)2 phase might have been synthesized after MCAS process. However, the formation of Na(Mg)BH4 solid solution might prevent the synthesis of a large amount of Mg(BH4)2 hydride. Once the solid solution is formed, the amount of Mg will be insufficient to form a large amount of Mg(BH4)2 hydride.
机译:本工作报告了Mg-H,Mg-Al-H和Mg-BH系统中纳米结构氢化物的机械化学合成(MCS)和机械化学活化合成(MCAS)的研究,方法是通过控制反应机械合金化/铣削(磁力磨Uni-Ball-Mill 5中的CRMA / CRMM)。通过X射线衍射(XRD),扫描电子显微镜(SEM),差示扫描量热法(DSC),热重分析法检查研磨后的粉末的结构和解吸性能。 Sieverts型仪器中的分析(TGA)和解吸测试。无论氢化物系统如何,经过长时间磨碎后,磨碎的Mg-H,Mg-Al-H和Mg-B-H粉末的形貌都可以通过明显的粒度细化和形成附聚物的趋势来表征。研究了纳米粒度和粒度对合成的MgH2氢化物的DSC解吸温度的影响。已发现合成的MgH2氢化物的粒径对其氢解吸DSC温度有深远的影响。 MgH2的纳米晶粒(微晶)大小似乎对DSC解吸温度没有明显影响。讨论了粒径和氢化物相的二元性在解吸过程中的作用。 CRMM获得的纳米结构MgH 2在约332°C释放氢,与目前的生产实践所制备的未研磨的商用MgH2(Tego MagnanRTM)相比,氢的释放度低约60°C。在Mg-Al-H系统中,通过使用四种起始化学计量Mg-2Al混合物的纳米结构Mg(AlH4)2配合物氢化物的MCS,尚未成功合成Mg(AlH4)2。假设在CRMA的iv初始阶段(〜10h)的Al(Mg)固溶体和随着研磨时间增加初始阶段从固溶体分解的游离Al(一种或多种)抑制了反应形成Mg(AlH4)2。 ;加热研磨后的Mg-Al-H粉末后,与Al形成纳米混合物的氢化物MgH2氢化物不会与Mg和氢发生反应而在研磨后的Mg-Al-H中形成Mg(AlH4)2,在相同的温度下表现出氢解吸温度范围为由CRMM生产的不含Al的纳米MgH 2。与MCS方法合成失败相比,已通过MCAS成功合成Mg(AlH4)2和2NaCl混合物。 DSC和TGA分析表明,Mg(AlH 4)2的分解在两步反应中在125-180和225-340℃的温度范围内发生。 Mg(AlH4)2分解后获得的与Al的纳米混合物中的MgH2在〜270°C释放氢,这比CRMM生产的不含Al的纳米MgH2约低80°C。在Mg-B-H系统中,当将Mg-2B混合物与含有B2O3的氧化无定形硼制成,然后在延长的MCS时间(200h)后,仅形成纳米级的g-MgH2氢化物。相反,原始Mg-2B混合物中的无氧化物非晶硼促使形成纳米MgB2和含有氢的非晶相的混合物。研磨后的Mg-2B混合物在〜100-400°C,〜4-4.3 MPa的氢气中进一步退火20-100h,不会导致三元Mg(BH4)2的形成。加热使用无氧化物的非晶态硼制备的长期研磨的Mg-B-H粉末后,与不存在第二相的纳米MgH2相比,具有MgB2的纳米混合物中的MgH2不会表现出较低的脱附温度。或者,将2NaBH4和MgCl2的粉末混合物用作合成Mg(BH4)2氢化物的原料。 MCAS处理后可能已经合成了非晶Mg(BH 4)2相。但是,Na(Mg)BH4固溶体的形成可能会阻止大量Mg(BH4)2氢化物的合成。一旦形成固溶体,Mg的量将不足以形成大量的Mg(BH4)2氢化物。

著录项

  • 作者

    Chiu, Chun.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Electronics and Electrical.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 298 p.
  • 总页数 298
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号