首页> 外文学位 >DEM generation and ocean tide modeling over Sulzberger Ice Shelf, West Antarctica, using synthetic aperture radar interferometry.
【24h】

DEM generation and ocean tide modeling over Sulzberger Ice Shelf, West Antarctica, using synthetic aperture radar interferometry.

机译:使用合成孔径雷达干涉测量法,在南极洲的苏尔茨伯格冰架上进行DEM生成和海潮建模。

获取原文
获取原文并翻译 | 示例

摘要

The use of Synthetic Aperture Radar Interferometry (InSAR) is an effective tool for studying the ice mass balance of polar regions and its contribution to global sea level change. An accurate, high-resolution digital elevation model (DEM) referenced within a well-defined terrestrial reference frame (TRF) is an inherent requirement to facilitate the use of InSAR to conduct these studies in remote polar regions where ground control points (GCPs) are unavailable. In this study, a digital elevation model by the Sulzberger Bay, West Antarctica is determined by using twelve European Remote Sensing (ERS)-1 and ERS-2 tandem satellite mission synthetic aperture radar scenes and nineteen Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles. Differential interferograms from the ERS-1/ERS-2 tandem mission SAR scenes acquired in the austral fall of 1996 are used together with four selected ICESat laser altimetry profiles in the austral fall of 2004 which provides GCPs, resulting in an improved geocentric 60-m resolution DEM over the grounded ice region. The InSAR DEM is then extended to include two ice tongues using ICESat profiles via Kriging. Fourteen additional ICESat profiles acquired in 2003-2004 are used to assess the accuracy of the DEM. After accounting for radar penetration depth and predicted surface changes, including effects due to ice mass balance, solid Earth tides, and glacial isostatic adjustment, in part to account for the eight-year data acquisition discrepancy, the resulting difference between the DEM and ICESat profiles is -0.55 +/- 5.46 m. After removing the discrepancy between the DEM and ICESat profiles for a final combined DEM using a bicubic spline, the overall difference is 0.05 +/- 1.35 m indicating excellent consistency.; Accurate knowledge of the Antarctic ice sheet mass balance plays an important role on the global sea level change. Ocean tides (barotropic and baroclinic) and tidal currents cause basal melting and migration of grounding lines, which are all critical to the accurate determination of ice sheet or ice stream mass balance. Ocean tides in the Antarctic Ocean, especially underneath ice shelves or sea ice, are poorly known primarily due to lack of observations with adequate resolution and knowledge of the bathymetry and ice shelf bottom roughness. InSAR has been used to measure the ice sheet mass balance, ice topography, ice stream velocity, and the location of the grounding lines. To properly use InSAR measurements for ice mass balance and because of their high spatial resolution (tens of meters), knowledge of ocean tides underneath the ice shelves needs to be accurately known and with commensurate resolution. Here two-pass differential InSAR (DInSAR) technique is applied for tidal signal modeling underneath the Sulzberger ice shelf, West Antarctica. The fine resolution (60-m) Digital Elevation Model (DEM) over grounded ice and ice shelf, obtained by combining ERS-1/2 tandem InSAR and ICESat laser altimetry, has been used to correct the topography phase from interferograms, resulting in a more accurate time series of vertical deformation measurements. In this study, it is demonstrated for the first time that observable tidal constituents can be estimated underneath an ice shelf using an InSAR time series. In particular, it is shown that the time series of observed tidal differences from InSAR agrees well with a number of global/regional ocean tide models such as NAO.99b, TPXO.6.2, GOT00.2, CATS02.01, and FES2004, with the regional model, CATS02.01, having the best agreement. The technique developed here can be applied to other ice shelf regions where tide modeling is poor in accuracy and resolution.
机译:合成孔径雷达干涉仪(InSAR)的使用是研究极地地区冰质量平衡及其对全球海平面变化的贡献的有效工具。在定义良好的地面参考框架(TRF)中参考的准确,高分辨率的数字高程模型(DEM)是固有要求,可帮助InSAR在地面控制点(GCP)所在的偏远极地地区进行这些研究不可用。在这项研究中,南极洲苏尔兹贝格湾的数字高程模型是通过使用十二个欧洲遥感(ERS)-1和ERS-2串联卫星任务合成孔径雷达场景以及十九个冰,云和陆地高程卫星( ICESat)激光测高仪配置文件。从1996年秋季开始获得的ERS-1 / ERS-2串联任务SAR场景的差分干涉图与2004年秋季开始的四个选定的ICESat激光测高剖面一起使用,提供了GCP,从而改善了地心60 m地面冰区上的分辨率DEM。然后,通过Kriging使用ICESat配置文件将InSAR DEM扩展为包括两个冰舌。在2003-2004年间获得的另外14个ICESat配置文件用于评估DEM的准确性。在考虑了雷达穿透深度和预测的表面变化(包括由于冰块平衡,固体地球潮汐和冰川等静压调整引起的影响)之后,部分考虑了八年的数据采集差异,DEM和ICESat剖面之间的差异是-0.55 +/- 5.46 m。使用双三次样条消除最终组合DEM的DEM和ICESat轮廓之间的差异后,总差异为0.05 +/- 1.35 m,表明具有极好的一致性。准确了解南极冰盖质量平衡对全球海平面变化起着重要作用。洋潮(正压和斜压)和潮流引起接地线的基础融化和迁移,这对于精确确定冰盖或冰流质量平衡都是至关重要的。南极洋潮,特别是在冰架或海冰下的海潮,人们鲜为人知,主要是因为缺乏足够分辨率的观测资料以及对测深法和冰架底部粗糙度的了解。 InSAR已用于测量冰盖质量平衡,冰面形貌,冰流速度以及接地线的位置。要正确地使用InSAR测量来实现冰块平衡,并且由于其高的空间分辨率(几十米),需要准确了解冰架下面的海潮知识并以适当的分辨率进行了解。此处,将两遍差分InSAR(DInSAR)技术应用于南极洲Sulzberger冰架下方的潮汐信号建模。通过将ERS-1 / 2串联InSAR和ICESat激光测高仪结合使用,可在地面冰和冰架上获得高分辨率(60-m)的数字高程模型(DEM),用于校正干涉图的形貌相位,从而获得垂直变形测量的时间序列更准确。在这项研究中,首次证明了可以使用InSAR时间序列估算冰架下的可观测潮汐成分。特别是,它表明,InSAR观测到的潮差的时间序列与NAO.99b,TPXO.6.2,GOT00.2,CATS02.01和FES2004等许多全球/区域海潮模型非常吻合,具有最佳协议的区域模型CATS02.01。这里开发的技术可以应用于潮汐建模精度和分辨率较差的其他冰架区域。

著录项

  • 作者

    Baek, Sang-Ho.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Geodesy.; Geology.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 大地测量学;地质学;
  • 关键词

  • 入库时间 2022-08-17 11:39:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号