首页> 外文学位 >Prediction and analysis of effects of non-synonymous single-nucleotide polymorphisms on protein function.
【24h】

Prediction and analysis of effects of non-synonymous single-nucleotide polymorphisms on protein function.

机译:非同义单核苷酸多态性对蛋白质功能的影响的预测和分析。

获取原文
获取原文并翻译 | 示例

摘要

Genetic variation is the raw material of evolution. By selecting the genotypes most "fit" to the current environment, nature determines further biological landscapes of the planet. Organisms of a single species are generally very similar genetically. However, the slight intra-species genome diversity accounts for most of the observed disparities in individual fitness (e.g. disease resistance or tolerance to environmental insults). In all species, a very large fraction of this variation is due to single nucleotide polymorphisms (SNPs).; More precisely defined, SNPs are single position (base) differences between the DNA sequences of two organisms of the same species. They can be generally classified into groups based on their location (coding/non-coding DNA) and effect in protein (synonymous/non-synonymous). Of these, the non-synonymous set is the most biophysically apparent - nsSNPs, by definition, alter the product protein sequence. However, since even these mutants do not necessarily have functional/structural consequences, the evaluation of the extent of their influence is non-trivial.; NsSNPs are responsible for numerous diseases. For example, a point mutation in the hemoglobin beta gene is one proven cause of sickle cell anemia. Other diseases, such as diabetes and cancer, have been correlated with a number of SNPs but their true genetic mechanisms remain unclear. "Wet-lab" experiments designed to evaluate the functional consequences of mutations are time-consuming and may be costly. For these reasons, in silico methods have been developed that try to separate the non-neutral mutations (having an effect on protein function) from neutral ones (no effect). Our contribution to this field is a neural-network based method called SNAP (Screening for Non-Acceptable Polymorphisms). This tool classifies nsSNPs into non-neutral/neutral categories using only the information extracted from corresponding protein sequences. SNAP achieves high levels of accuracy by combining conservation/family data with sequence-based predictions of various protein features, such as secondary structure and solvent accessibility.; This work describes our method in detail, outlines the assessment of performance using various data sets, and addresses the relationship of SNAP predictions to diseases, protein structure, and functional site annotations. Information presented here suggests that protein sequence carries enough information for making accurate assumptions regarding protein structure and function.
机译:遗传变异是进化的原材料。通过选择最适合当前环境的基因型,大自然决定了地球的其他生物景观。单个物种的生物在遗传上通常非常相似。但是,物种内部的微小基因组多样性是造成大多数个体适应性差异的原因(例如抗病性或对环境侵害的耐受性)。在所有物种中,这种变异的很大一部分归因于单核苷酸多态性(SNP)。更精确地定义,SNP是同一物种的两个生物体的DNA序列之间的单个位置(碱基)差异。根据它们的位置(编码/非编码DNA)和对蛋白质的影响(同义/非同义),通常可以将它们分为几类。其中,非同义词集在生物学上最明显-nsSNPs可以改变产物蛋白序列。然而,由于即使这些突变体也不一定具有功能/结构后果,因此对其影响程度的评估也不是一件容易的事。 NsSNP导致多种疾病。例如,血红蛋白β基因中的点突变是镰状细胞性贫血的一种已证明原因。其他疾病,例如糖尿病和癌症,已经与许多SNP相关,但其真正的遗传机制仍不清楚。设计用于评估突变的功能后果的“湿实验室”实验既费时又昂贵。由于这些原因,已经开发了计算机方法,试图将非中性突变(对蛋白质功能有影响)与中性突变(无影响)分开。我们对该领域的贡献是一种基于神经网络的方法,称为SNAP(非可接受多态性筛选)。该工具仅使用从相应蛋白质序列中提取的信息将nsSNPs分为非中性/中性类别。 SNAP通过将保守/家族数据与各种蛋白质特征(例如二级结构和溶剂可及性)的基于序列的预测相结合,实现了很高的准确性。这项工作详细描述了我们的方法,使用各种数据集概述了性能评估,并解决了SNAP预测与疾病,蛋白质结构和功能位点注释之间的关系。此处提供的信息表明,蛋白质序列带有足够的信息,可以对蛋白质的结构和功能做出准确的假设。

著录项

  • 作者

    Bromberg, Yana.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号