首页> 外文学位 >The design of a novel tip enhanced near-field scanning probe microscope for ultra-high resolution optical imaging.
【24h】

The design of a novel tip enhanced near-field scanning probe microscope for ultra-high resolution optical imaging.

机译:一种用于超高分辨率光学成像的新型尖端增强型近场扫描探针显微镜的设计。

获取原文
获取原文并翻译 | 示例

摘要

Traditional light microscopy suffers from the diffraction limit, which limits the spatial resolution to λ/2. The current trend in optical microscopy is the development of techniques to bypass the diffraction limit. Resolutions below 40 nm will make it possible to probe biological systems by imaging the interactions between single molecules and cell membranes. These resolutions will allow for the development of improved drug delivery mechanisms by increasing our understanding of how chemical communication within a cell occurs. The materials sciences would also benefit from these high resolutions. Nanomaterials can be analyzed with Raman spectroscopy for molecular and atomic bond information, or with fluorescence response to determine bulk optical properties with tens of nanometer resolution.;Near-field optical microscopy is one of the current techniques, which allows for imaging at resolutions beyond the diffraction limit. Using a combination of a shear force microscope (SFM) and an inverted optical microscope, spectroscopic resolutions below 20 nm have been demonstrated. One technique, in particular, has been named tip enhanced near-field optical microscopy (TENOM). The key to this technique is the use of solid metal probes, which are illuminated in the far field by the excitation wavelength of interest. These probes are custom-designed using finite difference time domain (FDTD) modeling techniques, then fabricated with the use of a focused ion beam (FIB) microscope. The measure of the quality of probe design is based directly on the field enhancement obtainable. The greater the field enhancement of the probe, the more the ratio of near-field to far-field background contribution will increase. The elimination of the far-field signal by a decrease of illumination power will provide the best signal-to-noise ratio in the near-field images. Furthermore, a design that facilitates the delocalization of the near-field imaging from the far-field will be beneficial.;Developed is a novel microscope design that employs two-photon non-linear excitation to allow the imaging of the fluorescence from almost any visible fluorophore at resolutions below 30 nm without changing filters or excitation wavelength. The ability of the microscope to image samples at atmospheric pressure, room temperature, and in solution makes it a very promising tool for the biological and materials science communities. The microscope demonstrates the ability to image topographical, optical, and electronic state information for single-molecule identification. A single computer, simple custom control circuits, field programmable gate array (FPGA) data acquisition, and a simplified custom optical system controls the microscope are thoroughly outlined and documented. This versatility enables the end user to custom-design experiments from confocal far-field single molecule imaging to high resolution scanning probe microscopy imaging.;Presented are the current capabilities of the microscope, most importantly, high-resolution near-field images of J-aggregates with PIC dye. Single molecules of Rhodamine 6G dye and quantum dots imaged in the far-field are presented to demonstrate the sensitivity of the microscope. A comparison is made with the use of a mode-locked 50 fs pulsed laser source verses a continuous wave laser source on single molecules and J-aggregates in the near-field and far-field. Integration of an intensified CCD camera with a high-resolution monochromator allows for spectral information about the sample. The system will be disseminated as an open system design.
机译:传统的光学显微镜存在衍射极限,这将空间分辨率限制为λ/ 2。光学显微镜的当前趋势是绕过衍射极限的技术的发展。低于40 nm的分辨率将使通过成像单个分子与细胞膜之间的相互作用来探测生物系统成为可能。这些决议将通过增进我们对细胞内化学通讯如何发生的理解,来开发改进的药物递送机制。材料科学也将从这些高分辨率中受益。可以使用拉曼光谱分析纳米材料的分子和原子键信息,或通过荧光响应来确定具有数十纳米分辨率的整体光学性质。近场光学显微镜是当前的技术之一,它允许以超过200nm的分辨率成像。衍射极限。使用剪切力显微镜(SFM)和倒置光学显微镜的组合,已证明光谱分辨率低于20 nm。特别地,一种技术被称为尖端增强近场光学显微镜(TENOM)。该技术的关键是使用固体金属探针,该探针在远场中被感兴趣的激发波长照亮。这些探针使用有限时域(FDTD)建模技术进行定制设计,然后使用聚焦离子束(FIB)显微镜进行制造。探头设计质量的度量直接基于可获得的场增强。探头的场增强越大,近场与远场本底贡献之比就越大。通过降低照明功率来消除远场信号将在近场图像中提供最佳的信噪比。此外,有利于促进近场成像从远场移离的设计将是有益的。;开发了一种新颖的显微镜设计,其采用双光子非线性激发来允许几乎任何可见光的成像。分辨率低于30 nm的荧光团,无需更改滤光片或激发波长。显微镜在大气压,室温和溶液中对样品成像的能力使其成为生物学和材料科学界非常有前途的工具。显微镜展示了对地形,光学和电子状态信息成像的能力,可用于单分子识别。全面概述并记录了单台计算机,简单的定制控制电路,现场可编程门阵列(FPGA)数据采集以及简化的定制光学系统对显微镜的控制。这种多功能性使最终用户可以定制设计实验,从共焦远场单分子成像到高分辨率扫描探针显微镜成像。展示了显微镜的当前功能,最重要的是,J-的高分辨率近场图像与PIC染料聚集。罗丹明6G染料和在远场中成像的量子点的单分子被提出来证明显微镜的灵敏度。使用锁模的50 fs脉冲激光源与连续波激光源进行比较,比较了单分子和近场和远场的J聚集体。增强型CCD相机与高分辨率单色仪的集成可提供有关样品的光谱信息。该系统将作为开放系统设计进行传播。

著录项

  • 作者

    Nowak, Derek Brant.;

  • 作者单位

    Portland State University.;

  • 授予单位 Portland State University.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 416 p.
  • 总页数 416
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号