首页> 外文学位 >Engineering the macro-nano interface: Designing the directed self-assembly and interfacial interactions of gold nanoparticle monolayers.
【24h】

Engineering the macro-nano interface: Designing the directed self-assembly and interfacial interactions of gold nanoparticle monolayers.

机译:设计宏观-纳米界面:设计金纳米粒子单层的定向自组装和界面相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Gold nanoparticles in the 1-2 mn core diameter size regime have generated a great deal of interest due to their size-dependent electronic, optical, and catalytic properties. A number of proof-of-concept experiments have demonstrated that small metal nanoparticles can be integrated into single electron transistors and optical waveguides. Still, reliable incorporation of gold nanoparticles into devices requires practical methods for their assembly on surfaces. Additionally, surface modification methods must be developed in order to control interparticle interactions and nanoparticle-environment interactions for use in sensing and catalysis.;In this research, nanoparticle-substrate interactions were utilized to assemble surface-bound gold nanoparticle monolayers with interesting electronic and catalytic properties. Gold nanoparticles (1.5 nm diameter) with a thiol ligand shell containing phosphonic acid terminal functionality were synthesized and assembled selectively onto hafnium-modified silicon dioxide substrates through bonding of the terminal phosphonate to Hf(IV) surface groups. By increasing the surface coverage of Hf, it was possible to assemble monolayers of gold nanoparticles dense enough to exhibit nonlinear current-voltage properties across a 5-mum electrode gap at room temperature. Moreover, by taking advantage of the selectivity of this ligand shell for ZnO over SiO 2, small gold nanoparticles were utilized as catalysts for selective growth of patterned, vertical ZnO nanowire arrays.;In addition to engineering nanoparticle-substrate interactions, new surface modification methods were introduced to manipulate the interaction of the as-deposited gold nanoparticle monolayers with the environment. For example, thiol-thiol ligand exchange reactions were carried out on the surface-bound nanoparticle monolayers by immersion in dilute thiol solutions. Contact angle and XPS measurements indicate that the upper, surface-exposed phosphonic acid ligands are replaced by incoming thiol ligands. TEM measurements indicate that nanoparticle monolayers remain surface-bound and are stable to this exchange process, as the average particle size and surface coverage are preserved. As another example, the ligand shell can be partially removed by UV/ozone treatment to expose bare gold cores to the surrounding environment. On metal oxide substrates, this approach activates the particles for room temperature oxidation of carbon monoxide to carbon dioxide.;This dissertation includes both my previously published and my co-authored materials.
机译:由于纳米颗粒的电子,光学和催化性能与尺寸有关,因此在1-2百万芯直径大小的金纳米颗粒中引起了极大的兴趣。大量的概念验证实验表明,可以将小的金属纳米颗粒集成到单个电子晶体管和光波导中。然而,将金纳米颗粒可靠地掺入装置中需要将其组装在表面上的实用方法。此外,必须开发表面修饰方法以控制粒子间相互作用和纳米粒子-环境相互作用,以用于传感和催化。;在这项研究中,纳米粒子-底物相互作用被用于组装具有有趣的电子和催化作用的表面结合的金纳米粒子单层。属性。合成了具有含膦酸末端官能团的巯基配体壳的金纳米颗粒(直径1.5 nm),并通过将末端膦酸酯键合到Hf(IV)表面基团选择性地组装到ha改性的二氧化硅基质上。通过增加Hf的表面覆盖率,可以组装密度足够高的金纳米颗粒单层,以在室温下在5微米的电极间隙上表现出非线性电流-电压特性。此外,通过利用该配体壳对ZnO的SiO2选择性,利用小型金纳米颗粒作为催化剂来选择性生长图案化的垂直ZnO纳米线阵列。;除了工程化纳米颗粒与基材的相互作用外,新的表面改性方法引入来操纵沉积金纳米粒子单层与环境的相互作用。例如,通过浸入稀硫醇溶液中,在表面结合的纳米颗粒单层上进行硫醇-硫醇配体交换反应。接触角和XPS测量表明,表面暴露在上面的膦酸配体被引入的硫醇配体取代。 TEM测量表明,由于保留了平均粒径和表面覆盖率,纳米颗粒单层仍保持表面结合并且对该交换过程稳定。作为另一个例子,可以通过UV /臭氧处理将配体壳部分除去,以使裸露的金核暴露于周围环境。在金属氧化物基体上,这种方法激活了用于将一氧化碳室温氧化为二氧化碳的颗粒。;本论文包括我以前发表的和我共同撰写的材料。

著录项

  • 作者

    Jespersen, Michael L.;

  • 作者单位

    University of Oregon.;

  • 授予单位 University of Oregon.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号