首页> 外文学位 >Hydrogen storage in microporous metal-organic frameworks with exposed metal sites.
【24h】

Hydrogen storage in microporous metal-organic frameworks with exposed metal sites.

机译:氢在具有裸露金属位点的微孔金属有机框架中的储氢。

获取原文
获取原文并翻译 | 示例

摘要

The work herein describes the design, synthesis, and characterization of a series of metal-organic frameworks with unsaturated metal centers, with an emphasis on their hydrogen storage properties. Chapter 1 presents an extensive survey of the literature in the area of hydrogen storage in metal-organic frameworks, and discusses the influence of metal-H2 binding on the enthalpy of hydrogen adsorption in these materials. The current synthetic strategies and potential new directions for increasing the H2 binding energy in physisorptive materials are presented.;Chapter 2 addresses the possibility of using light metals, such as magnesium, for synthesizing lighter materials with increased H2 gravimetric uptake. The synthesis of Mg3(NDC)3 (NDC2- = 2,6-naphthalenedicarboxylate), the first magnesium-based microporous metal-organic framework is described. It is shown that this material is isostructural with a zinc-based framework and with a series of other first-row transition metal-based materials. Upon desolvation, Mg3(NDC)3 selectively adsorbs O2 and H2, showing potential for separating these two gases from mixtures with N2 and CO.;Chapter 3 introduces a new class of bridging ligands: the tetrazolates. Use of 1,4-benzeneditetrazolate (BDT2-) for the synthesis of a series of two- and three-dimensional frameworks, some of which are isostructural with carboxylate frameworks, shows that this ditopic ligand can function as an analogue of 1,4-benzenedicarboxylate. All four three-dimensional frameworks: Zn3(BDT)3, Mn3(BDT)3, Mn 2(BDT)C12, and Cu(BDT) exhibit permanent microporosity and show relatively large enthalpies of H2 adsorption, hinting to the possibility that H2 binds directly to unsaturated metal sites in these materials.;In Chapters 4 and 5, powder neutron diffraction is used to demonstrate unequivocally that H2 binds to unsaturated Mn2+ and Cu2+ sites within Mn3[(Mn4Cl) 3(BTT)8(CH3OH)10]2 (BTT 3- = 1,3,5-benzenetristetrazolate) and HCu[(Mn4Cl) 3(BTT)8]•3.5HCl, two metal-organic frameworks with a sodalite-like topology. It is shown that the strong interaction of H 2 with exposed metal sites in these frameworks contributes to very high H2 uptakes of up to 6.9 wt % and 60 g/L, and H2 binding energies of up to 10.1 kJ/mol, among the highest thus far for any microporous material.;The unique anionic character of Mn3[(Mn4Cl) 3(BTT)8(CH3OH)10]2 is exploited in Chapter 6, where a series of cation exchange reactions are shown to produce a series of related materials with the general formula M3[(Mn 4Cl)3(BTT)8(CH3OH)10] 2 (M = Fe2+, Co2+, Ni2+, Cu2+, Zn2+. Li+, Cu+). Hydrogen sorption measurements revealed significant differences among the enthalpies of adsorption in these materials, with the C2+-exchanged framework displaying the largest enthalpy of adsorption reported thus far for any microporous material: 10.6 kJ/mol. The possibility of using similar ion exchange reactions for catalytic applications is also discussed here.;Chapter 7 addresses the phenomenon of catenation in the synthesis of metal-organic frameworks. For the first time, it is demonstrated that catenation can be controlled by introducing minute modifications in the backbone of an organic ligand. This strategy is employed to synthesize two related metal-organic frameworks, Cu3[(Cu4Cl)3 (TPB-3tz)8]2 (TPB-3tz3- = 1,3,5-tris( p-tetrazolylphenyl)-benzene) and Cu3[(Cu4Cl) 3(TPT-3tz)]2 (TPT-3tz3- = 2,4,6-tris( p-tetrazolylphenyl)-triazine), and it is shown that interpenetration confers stability to the latter, which consequently exhibits higher surface area and increased H2 uptake compared to the former.;This work concludes with Chapter 8, wherein the synthesis of H4 TTPM, a novel tetrahedral tetrazolate-based ligand is described. The new ligand used to synthesize two highly-connected three-dimensional frameworks, Mn6(TTPM)3 and Cu[(Cu4Cl)(TTPM)2] 2, which exhibit very rare topologies identical to those of garnet and fluorite. It is shown that the anionic Cu-based framework displays a large surface area, high H2 uptake, and is amenable to a post-synthetic treatment that transforms it into a neutral framework, a phenomenon that has not been reported for a metal-organic framework thus far.
机译:本文的工作描述了一系列具有不饱和金属中心的金属有机骨架的设计,合成和表征,重点是其氢存储性能。第1章对金属-有机框架中的氢存储领域进行了广泛的文献综述,并讨论了金属-H 2结合对这些材料中氢吸附焓的影响。提出了目前的合成策略和增加物理吸附材料中H2结合能的潜在新方向。第二章探讨了使用轻金属(如镁)合成重量增加的H2较轻材料的可能性。描述了第一个镁基微孔金属有机骨架Mg3(NDC)3(NDC2- = 2,6-萘二甲酸酯)的合成。结果表明,这种材料是同构的,具有锌基骨架和一系列其他第一行过渡金属基材料。脱溶剂后,Mg3(NDC)3选择性吸附O2和H2,显示出从具有N2和CO的混合物中分离这两种气体的潜力。第3章引入了新型的桥连配体:四唑酸盐。 1,4-苯二四唑酸酯(BDT2-)用于合成一系列二维和三维骨架的研究表明,该二位配体可作为1,4-的类似物,其中一些骨架与羧酸酯骨架同构。苯二甲酸。所有四个三维框架:Zn3(BDT)3,Mn3(BDT)3,Mn 2(BDT)C12和Cu(BDT)表现出永久的微孔性并显示出相对较大的H2吸附焓,暗示了H2结合的可能性在第4章和第5章中,粉末中子衍射明确地证明了H2与Mn3 [(Mn4Cl)3(BTT)8(CH3OH)10] 2中的不饱和Mn2 +和Cu2 +结合。 (BTT 3- = 1,3,5-苯三四唑酸酯)和HCu [(Mn4Cl)3(BTT)8]•3.5HCl,两种具有方钠石状拓扑结构的金属有机骨架。结果表明,在这些骨架中,H 2与暴露的金属位点之间的强相互作用导致很高的H2吸收率,最高可达6.9 wt%和60 g / L,H2的结合能最高为10.1 kJ / mol,是最高的到目前为止,对于任何微孔材料。;第6章中都利用了Mn3 [(Mn4Cl)3(BTT)8(CH3OH)10] 2的独特阴离子特征,其中显示了一系列阳离子交换反应可产生一系列相关的具有通式M3 [(Mn 4Cl)3(BTT)8(CH3OH)10] 2的材料(M = Fe2 +,Co2 +,Ni2 +,Cu2 +,Zn2 +,Li +,Cu +)。氢吸附测量结果表明,这些材料的吸附焓之间存在显着差异,C2 +交换骨架显示出迄今为止所报告的任何微孔材料的最大吸附焓:10.6 kJ / mol。本文还讨论了在催化应用中使用类似离子交换反应的可能性。第7章介绍了金属有机骨架合成中的级联现象。首次证明,可通过在有机配体的主链中引入微小修饰来控制串联。该策略用于合成两个相关的金属有机骨架Cu3 [(Cu4Cl)3(TPB-3tz)8] 2(TPB-3tz3- = 1,3,5-tris(对四唑基苯基)-苯)和Cu3 [(Cu4Cl)3(TPT-3tz)] 2(TPT-3tz3- = 2,4,6-三(对-四唑基苯基)-三嗪),并且显示互穿性赋予后者稳定,因此表现出更高的互穿性。与前者相比,H2 TTPM具有更高的表面积和增加的H2吸收。这项工作以第8章结束,其中描述了H4 TTPM的合成,H4 TTPM是一种新型的基于四面体四唑酸酯的配体。新的配体用于合成两个高度连接的三维骨架Mn6(TTPM)3和Cu [(Cu4Cl)(TTPM)2] 2,它们显示出与石榴石和萤石非常罕见的拓扑结构。结果表明,阴离子型铜基骨架具有较大的表面积,较高的H2吸收率,并且适合合成后的处理,从而将其转变为中性骨架,这种现象尚未在金属有机骨架上得到报道。迄今。

著录项

  • 作者

    Dinca, Mircea.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号