首页> 外文学位 >Regulation of plant defense against biotrophic and necrotrophic pathogens.
【24h】

Regulation of plant defense against biotrophic and necrotrophic pathogens.

机译:调节植物防御生物营养和坏死性病原体的能力。

获取原文
获取原文并翻译 | 示例

摘要

Continuously exposed to the challenges from various kinds of pathogens, plants have evolved multilayered and cooperative defense mechanisms to protect themselves, which are usually dependent on the small signaling molecules, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). However, how plants manipulate these defense signaling pathways to lead to defense responses to pathogens is still poorly understood.;The first part of my studies is the functional characterization of pathogen-induced Arabidopsis WRKY33 and stress-responsive WRKY25 in disease resistance.;Disruption of WRKY33 resulted in enhanced susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola concomitant with reduced expression of the JA/ET-regulated plant defensin PDF1.2 gene. Constitutive overexpression of WRKY33, on the other hand, increased resistance to the two necrotrophic fungal pathogens. Double mutant analysis indicated that the enhanced susceptibility of the wrky33 mutants to B. cinerea was SA-independent. In addition, some genes involved in resistance to necrotrophic pathogens were identified as WRKY33 target genes by microarray experiments. On the other hand, although constitutive overexpression of WRKY33 resulted in enhanced susceptibility to a virulent strain of the bacterial pathogen Pseudomonas syringae, the wrky33 mutants did not show altered responses to this pathogen. WRKY33 was localized to the nucleus of plant cells with strong transcriptional activation activities and recognized DNA molecules containing the TTGACC W-box sequence. Taken together, these results indicate that pathogen-induced WRKY33 is an important transcription factor that positively regulates plant defense responses to necrotrophic pathogens.;On the other hand, WRKY25 is mainly involved in resistance to the bacterial pathogen P. syringae. The expression of WRKY25 was responsive to general environmental stresses and this stress-responsive expression was positively regulated by the SA signaling pathway and negatively regulated by the JA signaling pathway. Two independent T-DNA insertion mutants for WRKY25 supported normal growth of a virulent strain of P. syringae, but developed reduced disease symptoms after infection. By contrast, Arabidopsis constitutively overexpressing WRKY25 supported enhanced growth of P. syringae and displayed increased disease symptom severity as compared to wild-type plants. These WRKY25 -overexpressing plants also displayed reduced expression of the SA-regulated PR1 gene after the pathogen infection, despite normal levels of free SA. Thus, WRKY25 appears to function as a negative regulator of SA-mediated defense responses to P. syringae.;In the second part of my studies, I identified and characterized the enhanced susceptibility to Pseudomonas 1 (esp1) mutant in Arabidopsis thaliana that exhibited enhanced susceptibility to both virulent and avirulent strains of P. syringae. The ESP1 gene was isolated through positional cloning and found to encode a novel member of the BAHD CoA-dependent acyl transferase superfamily. Pathogen-induced accumulation of SA and expression of pathogenesis-related (PR) genes were compromised in the esp1 mutant. Application of exogenous SA could rescue the impaired PR genes expression and disease resistance of the esp1 mutant, suggesting the ESP1 functions upstream of SA. In addition, several lines of evidence suggest that ESP1 functions together with the acyl-adenylate/thioester-forming enzyme PBS3 in the synthesis of a precursor or a regulatory molecule for SA biosynthesis. Thus, ESP1 plays a critical role in regulating pathogen-induced SA accumulation and resistance to P. syringae. In the No-0 background, disruption of the ESP1 gene resulted in enhanced resistance to necrotrophic fungal pathogens B. cinerea and A. brassicicola, but compromised tolerance to oxidative stress, high salinity, ABA and osmotic stress. These results suggest that ESP1 functions in modulating the crosstalk between SA- and JA-dependent pathways and in regulating the plant responses to abiotic stresses.
机译:植物不断暴露于各种病原体的挑战之下,它们已经进化出多层合作的防御机制来保护自己,这些机制通常取决于小的信号分子,例如水杨酸(SA),茉莉酸(JA)和乙烯(ET) )。然而,植物如何操纵这些防御信号途径导致对病原体的防御反应仍然知之甚少。我的研究的第一部分是病原体诱导的拟南芥WRKY33和胁迫响应性WRKY25在疾病抗性中的功能表征。 WRKY33导致对坏死性真菌病原体灰葡萄孢和棉链霉菌的敏感性增加,同时JA / ET调节的植物防御素PDF1.2基因的表达降低。另一方面,WRKY33的组成型过表达增加了对两种坏死性真菌病原体的抗性。双重突变体分析表明,wrky33突变体对灰质芽孢杆菌的敏感性增强与SA无关。另外,通过微阵列实验将一些与坏死病原体抗性有关的基因鉴定为WRKY33靶基因。另一方面,虽然WRKY33的组成型过表达导致增强了对细菌病原体丁香假单胞菌的强毒株的敏感性,但wrky33突变体并未显示出对该病原体的反应改变。 WRKY33定位于具有强转录激活活性和公认的包含TTGACC W-box序列的DNA分子的植物细胞核。综上所述,这些结果表明病原体诱导的WRKY33是正调控植物对坏死性病原体的防御反应的重要转录因子。另一方面,WRKY25主要参与对细菌性丁香假单胞菌的抗性。 WRKY25的表达对一般的环境压力有响应,而这种压力响应的表达受SA信号通路正调控,而受JA信号通路负调控。 WRKY25的两个独立的T-DNA插入突变体支持丁香假单胞菌的强毒株的正常生长,但感染后病情减轻。相比之下,与野生型植物相比,组成型过表达WRKY25的拟南芥支持丁香假单胞菌的生长增强,并显示出增加的疾病症状严重性。尽管游离SA水平正常,但是这些WRKY25过表达植物在病原体感染后也显示出SA调节的PR1基因的表达降低。因此,WRKY25似乎是SA介导的对丁香假单胞菌的防御反应的负调节子。在我的第二部分研究中,我鉴定并鉴定了拟南芥对假单胞菌1(esp1)突变体的敏感性增强,表现出增强的敏感性。对丁香假单胞菌的毒力和无毒力的敏感性。 ESP1基因是通过位置克隆分离的,并发现其编码BAHD CoA依赖性酰基转移酶超家族的一个新成员。 esp1突变体损害了病原体诱导的SA积累和与病原相关(PR)基因的表达。外源SA的应用可以挽救受损的PR基因表达和esp1突变体的抗病性,表明ESP1在SA上游起作用。另外,一些证据表明,ESP1与酰基-腺苷酸/硫酯形成酶PBS3一起在SA生物合成的前体或调节分子的合成中起作用。因此,ESP1在调节病原体诱导的SA积累和对丁香假单胞菌的抗性中起关键作用。在No-0背景下,ESP1基因的破坏导致对坏死性真菌病原体B. cinerea和A. brasicicola的抗性增强,但损害了对氧化胁迫,高盐度,ABA和渗透胁迫的耐受性。这些结果表明,ESP1在调节SA和JA依赖性途径之间的串扰以及调节植物对非生物胁迫的反应中起作用。

著录项

  • 作者

    Zheng, Zuyu.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Agriculture Plant Pathology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物病理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号