首页> 外文学位 >Ultracapacitor assisted powertrains: Modeling, control, sizing, and the impact on fuel economy.
【24h】

Ultracapacitor assisted powertrains: Modeling, control, sizing, and the impact on fuel economy.

机译:超级电容器辅助动力总成:建模,控制,调整大小以及对燃油经济性的影响。

获取原文
获取原文并翻译 | 示例

摘要

This thesis investigates possible fuel economy gains attainable by a combination of high-power density ultracapacitors (also called supercapacitors) and an induction motor integrated into a conventional vehicle powertrain for power assistance.;Periods of quick acceleration require a much higher power output from an automobile than what is encountered under more typical driving conditions. A simple kinetic energy calculation can show that accelerating a 2000 kg vehicle (roughly the size of a Ford Explorer SUV) from 0 to 60 mph in 10 seconds requires almost 70 kW of power, in addition to the power needed to overcome road and air drag forces. Situations such as these consume a disproportionately high amount of fuel, and have a negative impact on the fuel economy of the vehicle. In conventional powertrains, the engine is typically sized much larger than is needed for steady-state operation, in order to meet these spikes in power demand. A larger engine is more expensive to manufacture and to operate. Such rapid transients in power may be better handled by the use of high power density ultracapacitors which represent the latest trend in electrostatic energy storage systems. While the total energy an ultracapacitor can store is typically ten times less than a battery of the same size, the ultracapacitor is capable of releasing or storing energy roughly ten times faster. The potential of this relatively new technology to assist the combustion engine during brief demand spikes, and to capture kinetic energy through regenerative braking, is the subject of this study.;A mild parallel hybrid powertrain is considered in which an ultracapacitor-supplied motor assists the engine during periods of high power demand, and the ultracapacitor may be recharged by the engine during periods of low demand, and through regenerative braking. A detailed simulation model of the powertrain is created to evaluate the fuel economy of the vehicle. The fuel economy gains are strongly dependent on how well the power split decision is made, that is the decision of how to distribute the power demand between the engine and the electric motor at each instant in time. To this end two forms of implementable control are designed to determine the power split between the engine and motor. A rule-based controller, which can be quickly tuned and implemented, is applied for more exploratory simulations. Simplicity and expedience in both tuning and implementation make this method useful for testing the impact of different component combinations on fuel economy. After a suitable combination of engine, motor, and ultracapacitor sizes has been determined, an optimization-based power management strategy is created which shows a better overall performance. Various component sizing and control strategies tested consistently indicate a potential for 10 to 15 percent improvement in fuel economy in city driving with the proposed mild hybrid powertrain. This order of improvement to fuel economy was confirmed by deterministic dynamic programming (DDP) which finds the best possible fuel economy.
机译:本文研究了通过将高功率密度超级电容器(也称为超级电容器)和感应电动机集成到常规车辆动力总成中以提供动力辅助的方法,可以实现燃油经济性的提高;快速加速的时期要求汽车输出更高的功率比在更典型的驾驶条件下遇到的情况要好。简单的动能计算可以表明,将2000 kg的车辆(大约是Ford Explorer SUV的大小)在10秒内从0 mph加速到60 mph时,除了克服道路和空中阻力所需的功率外,还需要近70 kW的功率。势力。诸如此类的情况消耗了不成比例的大量燃油,并对车辆的燃油经济性产生了负面影响。在常规动力总成中,发动机的尺寸通常比稳态操作所需的尺寸大得多,以便满足功率需求的这些峰值。较大的发动机制造和操作成本较高。通过使用代表静电能量存储系统最新趋势的高功率密度超级电容器,可以更好地处理这种功率的快速瞬变。超级电容器可以存储的总能量通常比相同大小的电池少十倍,而超级电容器的释放或存储能量大约快十倍。这项相对较新的技术有可能在短暂的需求高峰期间协助内燃机,并通过再生制动来捕获动能,这是本研究的主题。;考虑了轻度并联混合动力总成,其中由超级电容器提供的电动机辅助在高功率需求期间,发动机可以充电,并且超级电容器可以在低需求期间由发动机充电,并且可以通过再生制动进行充电。建立了动力总成的详细仿真模型,以评估车辆的燃油经济性。燃油经济性的提高很大程度上取决于做出功率分配决策的程度,也就是如何在每个时间瞬间在发动机和电动机之间分配功率需求的决策。为此,设计了两种形式的可实施控制来确定发动机和电动机之间的功率分配。可以快速调整和实施的基于规则的控制器可用于更多探索性仿真。调整和实施方面的简便性和便利性使该方法可用于测试不同组件组合对燃油经济性的影响。在确定了发动机,电动机和超级电容器尺寸的合适组合之后,便创建了基于优化的电源管理策略,该策略显示了更好的总体性能。经过持续测试的各种组件的尺寸和控制策略表明,采用建议的轻度混合动力总成,在城市驾驶中可将燃油经济性提高10%至15%。确定性动态规划(DDP)证实了这种改善燃油经济性的方法,该方法可以找到最佳的燃油经济性。

著录项

  • 作者

    Rotenberg, Dean.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Automotive.;Engineering Mechanical.
  • 学位 M.Eng.
  • 年度 2008
  • 页码 58 p.
  • 总页数 58
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术及设备;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号