【24h】

A Mechanism for Creating Variable Nanometer Gaps

机译:创建可变纳米间隙的机制

获取原文
获取原文并翻译 | 示例

摘要

The creation and control of electrodes separated by a nanometer gap can provide a direct method to interface with materials and phenomenon on the size-scale of individual molecules. In particular, the study of electrokinetic properties of liquids within nanogaps may enable new measurement modalities for determining the molecular structure and composition of materials. As discussed by the theoretical work of Bazant et al and demonstrated by the experimental work of Yi et al, the electrical impedance of fluid in nanometer channels can be dramatically different from values predicted by traditional macroscale models. When the physics of these situations are completely understood, it may be possible to apply these techniques to (1) industrial chemical processes to detect the presence of certain molecules in solution; (2) biochemical research to determine the electromechanical properties of biological molecules; and (3) molecular-electronics research to measure the electron transport properties of molecules and nanostructures. This paper reports on the development of an experimental apparatus for studying the electrokinetic properties of liquid thin films in an extremely confined state. In particular, this apparatus will act as an impedance measurement instrument where the distance between electrodes can be varied.
机译:由纳米间隙分隔的电极的创建和控制可以提供一种直接的方法来与材料和单个分子的大小尺度上的现象进行交互。特别地,对纳米间隙内的液体的电动特性的研究可以为确定材料的分子结构和组成提供新的测量方式。正如Bazant等人的理论工作所讨论并由Yi等人的实验工作所证明的那样,纳米通道中流体的电阻抗可能与传统的宏观模型所预测的值有很大不同。当完全了解了这些情况的物理原理后,就有可能将这些技术应用于(1)工业化学过程,以检测溶液中某些分子的存在; (2)生化研究以确定生物分子的机电性能; (3)分子电子学研究,以测量分子和纳米结构的电子传输特性。本文报道了一种研究设备的研究进展,该设备用于研究处于极密闭状态的液体薄膜的电动特性。特别地,该设备将用作阻抗测量仪器,其中电极之间的距离可以改变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号