【24h】

Silicon Germanium Epitaxy: A New Material For MEMS

机译:硅锗外延:MEMS的新材料

获取原文
获取原文并翻译 | 示例

摘要

A wide array of materials have been investigated as candidate fabrication templates for precision microclcctromcchanical structures, including boron-diffused silicon, boron-doped epitaxial silicon, polysilicon, silicon-on-insulator, and wafer-thick bulk structures. Here we present the latest fabrication results for epitaxial silicon-germanium alloys, a new class of materials which possess excellent crystalline structure, are compatible with non-toxic etchants in bulk micromachining, and are capable of on-chip integration with electronics. For MEMS applications, silicon-germanium alloy layers are grown using a graded buffer approach, resulting in very high quality micromachined structures. Very low defect densities are obtained through the use of these relaxed buffers. Original etch-stop studies determined that Ge doping provided a very weak selectivity in anisotropic etchants such as KOH and EDP. However, by extending the range of Ge concentration to over 20%, we have found extremely high etch selectivities in a variety of etchants. Unlike boron-doped layers, SiGe exhibits etch stop characteristics in the non-toxic, process compatible solution TMAH. The combination of independence from boron doping concentration and etchant compatibility make SiGe a material which is ideal for integration with on-chip electronics. In this work we present the latest fabrication data on comb-drive resonators built using SiGe epitaxial layers. Process compatibility issues related to wafer curvature, surface finish and reactive-ion-etching chemistries are addressed. An unexpected result of the fabrication process, curvature of released structures, is resolved by annealing wafers after the SiGe deposition. Changes in Young's modulus arising from the high atomic fraction of Ge in the device can be determined by simple beam analysis based on observed resonant frequencies. Overall, build precision for these devices is excellent. We conclude by addressing the remaining challenges for wide-scale implementation of silicon-germanium epitaxial MEMS.
机译:已经研究了多种材料作为精密微机电结构的候选制造模板,包括硼扩散硅,掺硼外延硅,多晶硅,绝缘体上硅和晶片厚的块状结构。在这里,我们介绍了外延硅锗合金的最新制造结果。外延硅锗合金是一类新型材料,具有出色的晶体结构,可与本体微机械加工中的无毒蚀刻剂兼容,并且能够与电子器件进行芯片集成。对于MEMS应用,使用渐变缓冲法生长硅锗合金层,从而形成了非常高质量的微机械结构。通过使用这些松弛的缓冲区可以获得非常低的缺陷密度。最初的蚀刻停止研究确定,Ge掺杂对各向异性蚀刻剂(如KOH和EDP)的选择性很弱。但是,通过将Ge浓度范围扩大到20%以上,我们发现各种蚀刻剂的蚀刻选择性极高。与掺硼层不同,SiGe在无毒,工艺兼容的溶液TMAH中表现出蚀刻停止特性。不受硼掺杂浓度影响和蚀刻剂相容性的结合使SiGe成为与片上电子设备集成的理想材料。在这项工作中,我们介绍了使用SiGe外延层构建的梳状驱动谐振器的最新制造数据。解决了与晶圆曲率,表面光洁度和反应性离子蚀刻化学有关的工艺兼容性问题。通过在SiGe沉积之后对晶片进行退火,可以解决制造过程的意外结果(释放结构的曲率)。可以通过基于观察到的谐振频率的简单光束分析来确定由器件中Ge的高原子分数引起的杨氏模量变化。总体而言,这些设备的制造精度非常好。最后,我们通过解决硅锗外延MEMS大规模实施面临的其余挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号