首页> 外文会议>The Second International Conference on Precision Engineering and NANO Technology (ICPN '2002) Oct 28-30, 2002 Changsha, China >Atomic Modeling and Simulation on the Mechanical Behavior of Single Crystal Copper Microstructure
【24h】

Atomic Modeling and Simulation on the Mechanical Behavior of Single Crystal Copper Microstructure

机译:单晶铜微结构力学行为的原子建模与仿真

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the tensile deformation process of single crystal copper microstructure is simulated by molecular dynamics using a three-dimensional model, where the Newton equations of motion are solved utilizing the Morse potential. Cohesive energy, bulk modulus and lattice constant of material are used to evaluate the three parameters of Morse interatomic potential for single crystal copper. To reduce the limit size effect the rigid boundary condition is employed and to control the tensile deformation at a low temperature the velocity scaling method is used. Two tensile models with and without crack are simulated separately using the approach described above. From the point of view of the energy evolution, the mechanism of deformation and fracture are illustrated. The failure strength of single crystal copper obtained by the simulation is 24.1 GPa in the model without crack and 20.6GPa in the model with crack respectively. The Griffith's fracture theory is used to make it clear that failure the strength of ideal microstructure is greatly higher than that of bulk material with defects.
机译:在本文中,使用三维模型通过分子动力学模拟了单晶铜微结构的拉伸变形过程,其中利用莫尔斯电势求解了牛顿运动方程。材料的内聚能,体积模量和晶格常数用于评估单晶铜的摩尔斯原子间势的三个参数。为了减小极限尺寸效应,采用了刚性边界条件,并且为了控制低温下的拉伸变形,使用了速度缩放方法。使用上述方法分别模拟了有裂纹和无裂纹的两个拉伸模型。从能量演化的角度,阐述了变形和断裂的机理。通过模拟获得的单晶铜的失效强度在无裂纹模型中为24.1 GPa,在有裂纹模型中为20.6GPa。格里菲斯的断裂理论被用来表明,理想的微观结构的破坏强度大大高于具有缺陷的大块材料的破坏强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号