首页> 外文会议>Research in computational molecular biology >A Geometric Arrangement Algorithm for Structure Determination of Symmetric Protein Homo-oligomers from NOEs and RDCs
【24h】

A Geometric Arrangement Algorithm for Structure Determination of Symmetric Protein Homo-oligomers from NOEs and RDCs

机译:用于确定NOE和RDC对称蛋白质均聚物的结构的几何排列算法

获取原文
获取原文并翻译 | 示例

摘要

Nuclear magnetic resonance (NMR) spectroscopy is a primary tool to perform structural studies of proteins in the physiologically-relevant solution-state. Restraints on distances between pairs of nuclei in the protein, derived from the nuclear Overhauser effect (NOE) for example, provide information about the structure of the protein in its folded state. NMR studies of symmetric protein homo-oligomers present a unique challenge. Current techniques can determine whether an NOE restrains a pair of protons across different subunits or within a single subunit, but are unable to determine in which subunits the restrained protons lie. Consequently, it is difficult to assign NOEs to particular pairs of subunits with certainty, thus hindering the structural analysis of the oligomeric state. Hence, computational approaches are needed to address this subunit ambiguity. We reduce the structure determination of protein homo-oligomers with cyclic symmetry to computing geometric arrangements of unions of annuli in a plane. Our algorithm, DISCO, runs in expected O(n2) time, where n is the number of distance restraints, and is guaranteed to report the exact set of oligomer structures consistent with ambiguously-assigned inter-subunit distance restraints and orientational restraints from residual dipolar couplings (RDCs). Since the symmetry axis of an oligomeric complex must be parallel to an eigenvector of the alignment tensor of RDCs, we can represent each distance restraint as a union of annuli in a plane encoding the configuration space of the symmetry axis. Oligomeric protein structures with the best restraint satisfaction correspond to faces of the arrangement contained in the greatest number of unions of annuli. We demonstrate our method using two symmetric protein complexes: the trimeric E. coli Diacylglycerol Kinase (DAGK), whose distance restraints possess at least two possible subunit assignments each; and a dimeric mutant of the immunoglobulin-binding domain Bl of streptococcal protein G (GB1) using ambiguous NOEs. In both cases, DISCO computes oligomer structures with high accuracy.
机译:核磁共振(NMR)光谱是在生理相关溶液状态下进行蛋白质结构研究的主要工具。例如,源于核Overhauser效应(NOE)的蛋白质中成对的核对之间的距离限制提供了有关处于折叠状态的蛋白质结构的信息。对称蛋白均聚物的NMR研究提出了一个独特的挑战。当前的技术可以确定NOE是否在不同的亚基之间或单个亚基内抑制一对质子,但是不能确定受限制的质子位于哪个亚基中。因此,难以确定地将NOE分配给特定的亚基对,从而阻碍了寡聚状态的结构分析。因此,需要计算方法来解决该子单元的歧义。我们减少具有循环对称性的蛋白质同-低聚物的结构测定,以计算平面中环的并集的几何排列。我们的算法DISCO在预期的O(n2)时间内运行,其中n是距离约束的数量,并保证报告与寡基分配的亚基间距离约束和残余偶极子的定向约束一致的低聚物结构的确切集合联轴器(RDC)。由于低聚复合物的对称轴必须平行于RDC的对齐张量的本征向量,因此我们可以将每个距离约束表示为编码对称轴配置空间的平面中的环的并集。具有最佳约束满足度的寡聚蛋白质结构对应于包含在最大数目的环联合中的排列的面。我们用两种对称的蛋白质复合物证明了我们的方法:三聚体大肠杆菌二酰基甘油激酶(DAGK),其距离限制至少具有两个可能的亚基分配。使用歧义NOEs和链球菌蛋白G(GB1)的免疫球蛋白结合结构域B1的二聚体突变体。在这两种情况下,DISCO都可以高精度计算低聚物结构。

著录项

  • 来源
  • 会议地点 Vancouver(CA);Vancouver(CA)
  • 作者单位

    Department of Computer Science, Duke University, Durham, NC 27708, USA;

    Department of Computer Science, Duke University, Durham, NC 27708, USA ,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA;

    Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA;

    Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA;

    Department of Computer Science, Duke University, Durham, NC 27708, USA ,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物工程学(生物技术);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号