首页> 外文会议>Photonic and phononic properties of engineered nanostructures V >Cylindrical and spherical space equivalents to the plane wave expansion technique of Maxwell's wave equations
【24h】

Cylindrical and spherical space equivalents to the plane wave expansion technique of Maxwell's wave equations

机译:麦克斯韦波动方程的平面波展开技术的圆柱和球面空间等效

获取原文
获取原文并翻译 | 示例

摘要

The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier-Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.
机译:应用于麦克斯韦波动方程的平面波扩展(PWM)技术为研究人员提供了有关介电结构光学特性的信息。该技术非常适合显示线性周期性的结构。当焦点集中在缺少线性周期性的光学谐振器和结构上时,本征过程很容易超过计算资源和时间限制。在显示圆柱形或球形对称性的介电结构的情况下,已采用一组特定于坐标系的基函数将麦克斯韦的波动方程式转换为本征矩阵公式,从中可以获得与介电曲线相关的谐振器状态。对于PWM,介电和场分量的逆在基础函数(圆柱中的Fourier-Fourier-Bessel,FFB和球面的Fourier-Bessel-Legendre,BLF)中得到扩展,并采用正交性来形成矩阵表达式。将介绍理论上的发展细节,指出如何克服该过程中的某些数学复杂性以及如何将本征矩阵调整为特定的模式类型。介绍了PWM,FFB和BLF的异同。在具有轴向圆柱对称性的结构的情况下,包含传播常数的z轴分量使该技术适用于光子晶体光纤和其他波导结构。将针对许多不同的介电几何形状(包括布拉格环形谐振器,圆柱形空间缝隙通道波导和瓶形谐振器)给出计算结果。将报告进一步增强计算过程的步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号