首页> 外文会议>Optical microlithography XXVI >Sub-12nm Optical Lithography with 4x Pitch Division and SMO-Lite
【24h】

Sub-12nm Optical Lithography with 4x Pitch Division and SMO-Lite

机译:具有4倍间距划分和SMO-Lite的亚12纳米光学光刻

获取原文
获取原文并翻译 | 示例

摘要

The CMOS logic 22nm node is being done with single patterning and a highly regular layout style using Gridded Design Rules (GDR). Smaller nodes will require the same regular layout style but with multiple patterning for critical layers. A "lines & cuts" approach is being used to achieve good pattern fidelity and process margin, with extendibility to ~7nm. In previous work, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective down to the 16nm node. The transition from single- to double- and in some cases triple- patterning was evaluated for different layout styles, with highly regular layouts delaying the need for multiple-patterning compared to complex layouts. To address mask complexity and cost, OPC for the "cut" patterns was studied and relatively simple OPC was found to provide good quality metrics such as MEEF and DOF. This is significant since mask data volumes of >500GB per layer are projected for pixelated masks created by complex OPC or inverse lithography; writing times for such masks are nearly prohibitive. In this study, we extend the scaling using SMO with simplified OPC in a technique called "SMO-Lite" beyond 16nm. The same "cut" pattern is used for each set of simulations, with "x" and "y" locations for the cuts scaled for each node. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops. Another approach for scaling the "cut" pattern has also been studied. This involves the use of a hole pitch division process to create a grid template combined with a relatively large "selection" pattern to create cuts at the desired grid locations. Experimental demonstration of the cut approach using SMO-Lite and a grid template will be presented. Wafer results have been obtained at a line half-pitch of 20nm, which corresponds to the gate pitch at the 10nm node.
机译:CMOS逻辑22nm节点使用网格化设计规则(GDR)进行单一图案化和高度规则的布局样式。较小的节点将需要相同的常规布局样式,但关键层需要多个图案。为了达到良好的图案保真度和工艺裕度,可采用“线条与切口”方法,扩展性达到〜7nm。在以前的工作中,已证明设计-源-掩码优化(DSMO)在16nm节点以下都是有效的。对于不同的布局样式,评估了从单图案到双图案的过渡,在某些情况下是从三图案的过渡,与复杂的布局相比,高度规则的布局延迟了对多图案的需求。为了解决掩模的复杂性和成本,对“切割”图案的OPC进行了研究,发现相对简单的OPC可提供高质量的度量标准,例如MEEF和DOF。这是很重要的,因为对于通过复杂的OPC或反光刻技术创建的像素化掩模,每层的掩模数据量预计大于500GB;这种口罩的书写时间几乎是禁止的。在这项研究中,我们将SMO与简化的OPC结合使用,将缩放比例扩展到16nm以上,这种技术称为“ SMO-Lite”。相同的“剪切”模式用于每组仿真,剪切的“ x”和“ y”位置针对每个节点缩放。该测试块是一个相当复杂的逻辑功能,具有约10万个组合逻辑和触发器门。还研究了缩放“剪切”模式的另一种方法。这涉及使用孔距分割工艺来创建栅格模板,该模板与相对较大的“选择”图案相结合,以在所需的栅格位置处创建切口。将演示使用SMO-Lite和网格模板进行切割方法的实验演示。晶片结果是在20nm的线半节距处获得的,该线节距对应于10nm节点处的栅极节距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号