...
首页> 外文期刊>Microelectronic Engineering >56 nm pitch Cu dual-damascene interconnects with self-aligned via using negative-tone development Lithography-Etch-Lithography-Etch patterning scheme
【24h】

56 nm pitch Cu dual-damascene interconnects with self-aligned via using negative-tone development Lithography-Etch-Lithography-Etch patterning scheme

机译:通过使用负性显影光刻和蚀刻光刻图案,实现具有自对准的56 nm节距的铜双大马士革互连

获取原文
获取原文并翻译 | 示例
           

摘要

In the attempts to push the resolution limits of 193 nm immersion lithography, this work demonstrates the building of 3 metal level 56 nm pitch copper dual-damascene interconnects, using Negative-Tone Development Lithography-Etch-Lithography-Etch (LELE) Patterning at line level. Line Resistance and intra-level capacitance can be affected by the double patterning integration, but a good process window has been demonstrated, showing no impact on RC performance. The introduction of a self-aligned via (SAV) process with a TiN hard-mask is able to provide a robust process window in terms of via-metal short yield at line and via level. SAV implementation at these dimensions also affects the aspect-ratio of the structures and leads to new challenges in metallization: optimized profile, without bowing or undercut, is mandatory to enable the filling of 28 nm lines. The metal hard-mask has to be removed or at least faceted by erosion. This can be achieved by conventional RIE process optimization, but pushes the RIE selectivity to challenging limits. Physical dimensions on target and via chain yield have been demonstrated by fine tuning RIE process. Profile improvement can also be achieved by the introduction of new WET process, helping the removal of the metal hard-mask while being neutral to the ULK. We have demonstrated good yield and reliability with an integration using hard-mask wet removal.
机译:在尝试提高193 nm浸没式光刻技术的分辨率极限的过程中,这项工作演示了使用负音发展光刻-蚀刻-光刻-蚀刻(LELE)图案化线在3个金属级56 nm间距铜双大马士革互连结构的构建。水平。线路电阻和内部电平电容可能会受到双重图案集成的影响,但是已经证明了良好的工艺窗口,对RC性能没有影响。采用TiN硬掩模的自对准通孔(SAV)工艺的引入,就在线和通孔水平上的通孔金属短成品率而言,能够提供强大的工艺窗口。在这些尺寸上实施SAV还会影响结构的长宽比,并在金属化方面带来新的挑战:必须进行优化的轮廓(无弯曲或底切),才能填充28 nm线。金属硬掩模必须被去除或至少被腐蚀刻蚀。这可以通过常规的RIE工艺优化来实现,但将RIE的选择性推到了极高的极限。通过微调RIE工艺已经证明了目标尺寸和通孔成品率的物理尺寸。通过引入新的WET工艺,也可以实现轮廓改善,这有助于去除金属硬掩模,同时对ULK保持中性。通过使用硬掩模湿法去除的集成,我们已经证明了良率和可靠性。

著录项

  • 来源
    《Microelectronic Engineering》 |2013年第7期|138-144|共7页
  • 作者单位

    STMicroelectronics, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    STMicroelectronics, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    IBM Albany Nanotech, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    IBM Albany Nanotech, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    IBM Albany Nanotech, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    IBM Albany Nanotech, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    IBM Albany Nanotech, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    Toshiba America Electronic Components Inc., 257 Fuller Rd, Albany, NY 12203, United States;

    IBM Albany Nanotech, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    IBM Albany Nanotech, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    IBM Albany Nanotech, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    STMicroelectronics, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    IBM Albany Nanotech, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

    IBM Albany Nanotech, 257 Fuller Rd, IBM suites, Albany, NY 12203, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lithography-Etch-Lithography-Etch; Hard-mask removal; BEOL; Profile optimization; 56 nm;

    机译:光刻刻蚀光刻刻蚀去除硬掩模;BEOL;配置文件优化;56纳米;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号