首页> 外文会议>OCEANS 2017 - Aberdeen >Tunable and broadband resonator pipe sound sources for ocean acoustic tomography, communications and long-range navigation
【24h】

Tunable and broadband resonator pipe sound sources for ocean acoustic tomography, communications and long-range navigation

机译:可调谐和宽带谐振器管道声源,用于海洋声层析成像,通信和远程导航

获取原文
获取原文并翻译 | 示例

摘要

High-efficient tunable sound sources in the ocean and bottom tomography have 15 years of operating history. The sound source is efficient, powerful, and has unlimited operational depth, as well as a minimum level of high frequency harmonic content. The projector uses a narrow-band, highly efficient sound resonator, which is tuned to match the frequency and phase of a reference frequency-modulated signal. The high-Q resonator tunes to match the frequency and phase of a reference frequency-modulated signal. The projector transmits a digitally synthesized frequency swept signal and mechnicallytunes the organ pipe to match the frequency and phase of a reference signal. The computer timing system uses a high precision Cesium atomic clock. The resonator tube projector consists of a volume source in the form of a pressure balanced symmetric Tonpilz driver and aluminum free flooded pipe. The actuator smoothly tunes the frequency of the resonator tube over a large frequency band. The transmission duration can vary from one second to a few minutes, and the frequency ranges from 140 Hz to 1200 Hz. The first tunable organ-pipe was successfully tested on 11.09.2001. Since 2001, this type of sound source has been used in many experiments: Pacific Ocean, Pioneer Seamount (2001); MOVE Experiment (2004-2005); Pacific Ocean, Hoke Seamount (2002-2004); NPAL04, SPICE04, Pacific Ocean (2004-2005); Fram Strait 2008-2012; Philippine Sea (2009, 2010-2011); Newfoundland, Canada (2014-2015). In 2013 TWR specially designed a sound source for a sea floor deployment. The bottom-deployed swept frequency array can be used for high-resolution seismic imaging of deep geological formations. The Teledyne underwater tunable resonant sound source demonstrated exceptional performance. However, the tunable transducers have limitations when used for arbitrary waveforms. They can only transmit frequency-modulated signals. When the single-resonance organ-pipes do not provide sufficient bandwidth, a doubly-resonant organ pipe provides transmission of arbitrary waveforms over a much wider frequency band. As with the single-resonance pipes, the sources can be used at all depths and are efficient and very light if built from composites. The doubly-resonant organ pipes comprise an inner resonator tube with thin walls tuned to a certain frequency surrounded by a larger-diameter tube (Morozov 2014, US patent 8670293). The projector is driven by a manual acoustic source attached with shock-mounts inside the inner resonator. These resonating tubes are open on both ends and typically made of aluminum or carbonfiber. The inner tube has much thinner walls to allow the sound pressure to spread into the outer tube. The tubes are asymmetrically shifted along the main axis and sound pressure can penetrate from the internal pipe though the area under the shifted external pipe into the external pipe and back. By changing the length of the shifter area, the coupling coefficient of two resonators can be regulated to achieve the desired bandwidth. The resulting resonant frequency is proportional to the pipe length. The radiated power from the resonators is proportional to the area of the orifices and the square of the propagated frequencies. To achieve a symmetrical frequency response the radiated power from both resonators should be approximately equal. The system can be expanded to the multi-resonance, multi-frequency case with multiple coaxial pipes coupled through the shifted areas. The doubly-resonant sound source was tested in the water at Woods Hole Oceanographic Institution and exhibited a high electro-acoustical efficiency and a high power output over a large operating band. Different variants of dual-resonant broadband organ-pipes were considered. The new tunable and broadband variants of organ pipes are analyzed by the COMSOL multi-physics simulation. The finite analysis, computer simulation gives a picture of the tunable resonant acoustics. For a clear interpretation of sound pressure levels (SPL) the analysis was done for the standard spherical piezo-ceramic driver. The finite element simulation shows the structural acoustics of the tunable resonator, and helps to improve the acoustics of the sound source. The analysis gave the correct solution for a tuning mechanism within the octave frequency range. Application of COMSOL finite element analysis predicted optimal parameters of the resonator and avoided a long series of water tests with parameter adjustments. The results are compared with the experimental test. The experimental parameters of the sound source are close to the COMSOL simulations. Teledyne Marine Systems continues innovating promising solutions for ocean acoustic tomography, navigation and seismo-acoustic applications.
机译:海洋和底部层析成像中的高效可调谐声源已有15年的运行历史。声源是高效,强大的,并且具有无限的操作深度,以及最低水平的高频谐波含量。该投影仪使用窄带高效声音谐振器,该谐振器经过调整以匹配参考调频信号的频率和相位。高Q谐振器进行调谐以匹配参考调频信号的频率和相位。投影仪发送数字合成的扫频信号,并对风琴进行机械调谐,以匹配参考信号的频率和相位。该计算机计时系统使用高精度铯原子钟。谐振管投影仪由压力平衡的对称Tonpilz驱动器和无铝溢流管形式的体积源组成。致动器在大频带上平滑地调谐谐振器管的频率。传输持续时间从一秒到几分钟不等,频率范围从140 Hz到1200 Hz。第一条可调风琴已于2001年9月11日成功测试。自2001年以来,这种声源已用于许多实验中:Pacific Ocean,Pioneer Seamount(2001); MOVE实验(2004-2005);太平洋,霍克海山(2002-2004); NPAL04,SPICE04,太平洋(2004-2005年);弗拉姆海峡2008-2012;菲律宾海(2009,2010-2011);加拿大纽芬兰(2014-2015)。 2013年,TWR为海底部署专门设计了声源。底部展开的扫频阵列可用于深部地质构造的高分辨率地震成像。 Teledyne水下可调共振声源表现出卓越的性能。但是,可调谐换能器在用于任意波形时会受到限制。它们只能发送调频信号。当单共振风琴无法提供足够的带宽时,双共振风琴可以在更宽的频带上传输任意波形。与单谐振管道一样,如果使用复合材料建造,则辐射源可以在所有深度使用,并且效率高,重量轻。双共振器官管包括内部共振管,该共振管的薄壁被调谐到一定频率,并被较大直径的管围绕(Morozov 2014,美国专利8670293)。投影仪由手动声源驱动,该声源在内部谐振器内部装有防震架。这些谐振管的两端均开口,通常由铝或碳纤维制成。内管的壁要薄得多,以允许声压传播到外管中。管道沿主轴非对称移动,并且声压可以从内部管道穿过移位后的外部管道下方区域进入外部管道,然后再返回。通过改变移位器区域的长度,可以调节两个谐振器的耦合系数以获得所需的带宽。产生的谐振频率与管道长度成正比。来自谐振器的辐射功率与孔口的面积和传播频率的平方成正比。为了获得对称的频率响应,两个谐振器的辐射功率应近似相等。该系统可以扩展到具有多个同轴管道的多共振,多频率的情况,这些同轴管道通过移动区域耦合。双共振声源已在伍兹霍尔海洋学研究所在水中进行了测试,在较大的工作频段内显示出高电声效率和高功率输出。考虑了双共振宽带器官管的不同变体。通过COMSOL多物理场仿真分析了器官管的新型可调和宽带变体。有限分析和计算机仿真给出了可调谐谐振声的图像。为了清楚地解释声压级(SPL),对标准球形压电陶瓷驱动器进行了分析。有限元模拟显示了可调谐振器的结构声学,并有助于改善声源的声学。分析为八度频率范围内的调谐机制提供了正确的解决方案。 COMSOL有限元分析的应用预测了谐振器的最佳参数,并避免了经过一系列参数调整的水测试。将结果与实验测试进行比较。声源的实验参数接近COMSOL仿真。 Teledyne Marine Systems继续为海洋声层析成像,导航和地震声应用创新有前途的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号