首页> 外文会议>International Manufacturing Science and Engineering Conference >UNCERTAINTY QUANTIFICATION IN METALLIC ADDITIVE MANUFACTURING THROUGH DATA-DRIVEN MODELLING BASED ON MULTI-SCALE MULTI-PHYSICS MODELS AND LIMITED EXPERIMENT DATA
【24h】

UNCERTAINTY QUANTIFICATION IN METALLIC ADDITIVE MANUFACTURING THROUGH DATA-DRIVEN MODELLING BASED ON MULTI-SCALE MULTI-PHYSICS MODELS AND LIMITED EXPERIMENT DATA

机译:基于多尺度多物理模型的数据驱动建模和有限实验数据,金属添加剂制造的不确定性量化

获取原文

摘要

One of significant challenges in the metallic additive manufacturing (AM) is the presence of many sources of uncertainty that leads to variability in microstructure and properties of AM parts. Consequently, it is extremely challenging to repeat the manufacturing of a high-quality product in mass production. A trial-and-error approach usually needs to be employed to attain a product with high quality. To achieve a comprehensive uncertainty quantification (UQ) study of AM processes, we present a physics-informed data-driven modeling framework, in which multi-level data-driven surrogate models are constructed based on extensive computational data obtained by multi-scale multi-physical AM models. It starts with computationally inexpensive metamodels, followed by experimental calibration of as-built metamodels and then efficient UQ analysis of AM process. For illustration purpose, this study specifically uses the thermal level of AM process as an example, by choosing the temperature field and melt pool as quantity of interest. We have clearly showed the surrogate modeling in the presence of high-dimensional response (e.g. temperature field) during AM process, and illustrated the parameter calibration and model correction of an as-built surrogate model for reliable uncertainty quantification. The experimental calibration especially takes advantage of the high-quality A M benchmark data from National Institute of Standards and Technology (NIST). This study demonstrates the potential of the proposed data-driven UQ framework for efficiently investigating uncertainty propagation from process parameters to material microstructures, and then to macro-level mechanical properties through a combination of advanced AM multi-physics simulations, data-driven surrogate modeling and experimental calibration.
机译:金属添加剂制造业(AM)中的重大挑战之一是存在许多不确定性来源,导致微观结构和AM部件性能的可变性。因此,重复批量生产中的高质量产品制造是非常挑战的。通常需要采用试验和错误方法来获得高质量的产品。为了实现AM过程的全面的不确定性量化(UQ)研究,我们提供了一种物理信息的数据驱动建模框架,其中基于通过多尺度多级获得的广泛计算数据构建多级数据驱动的代理模型物理am型号。它从计算上廉价的元模型开始,然后是竣工元模型的实验校准,然后高效的UQ分析AM过程。出于插图目的,本研究专门使用AM工艺的热水位作为示例,通过选择温度场和熔融池作为感兴趣的数量。在AM过程期间,我们已经清楚地显示了在高维响应(例如温度场)的存在下的代理建模,并说明了用于可靠的不确定性量化的竣工代理模型的参数校准和模型校正。实验校准特别利用来自国家标准与技术研究所(NIST)的高质量A基准数据。本研究展示了所提出的数据驱动UQ框架的潜力,用于有效地研究从工艺参数到材料微结构的不确定性传播,然后通过先进的AM多物理模拟,数据驱动代理建模和宏观级机械性能。实验校准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号