首页> 外文会议>IAA Symposium on Visions and Strategies for the Future;International Astronautical Congress >Automated Multidisciplinary Design and Control of Hopping Robots for Exploration of Extreme Environments on the Moon and Mars
【24h】

Automated Multidisciplinary Design and Control of Hopping Robots for Exploration of Extreme Environments on the Moon and Mars

机译:自动化多学科设计与控制跳跃机器人,以探索月球和火星极端环境

获取原文

摘要

The next frontier in solar system exploration will be missions targeting extreme and rugged environments such as caves, canyons, cliffs and crater rims of the Moon, Mars and icy moons. These environments are time capsules into early formation of the solar system and will provide vital clues of how our early solar system gave way to the current planets and moons. These sites will also provide vital clues to the past and present habitability of these environments. Current landers and rovers are unable to access these areas of high interest due to limitations in precision landing techniques, need for large and sophisticated science instruments and a mission assurance and operations culture where risks are minimized at all costs. Our past work has shown the advantages of using multiple spherical hopping robots called SphereX for exploring these extreme environments. Our previous work was based on performing exploration with a human-designed baseline design of a SphereX robot. However, the design of SphereX is a complex task that involves a large number of design variables and multiple engineering disciplines. In this work we propose to use Automated Multidisciplinary Design and Control Optimization (AMDCO) techniques to find near optimal design solutions in terms of mass, volume, power, and control for SphereX for different mission scenarios. The implementation of AMDCO for SphereX design is a complex process because of complexity of modelling and implementation, discontinuities in the design space, and wide range of time scales and exploration objectives. Moreover, the design of SphereX will depend on target environment (e.g. gravity, temperature, radiation and surface properties), coordination complexity with increased number of robots, expected distance of exploration and expected mission time length. We address these issues by using machine learning in the form of Genetic Algorithms integrated with gradient-based optimization techniques to search through the design
机译:太阳系勘探中的下一个前沿将是针对极端和崎岖的环境的任务,如洞穴,峡谷,悬崖和月球,火星和冰冷的卫星的火山口。这些环境是时间胶囊进入太阳系早期形成的,并将提供重要的线索,我们的早期太阳系如何让位于当前的行星和卫星。这些网站还将提供对过去的重要线索和这些环境的居住地。由于精密着陆技术的局限,当前的着陆器和流浪者无法访问这些高兴趣领域,需要大型和复杂的科学仪器以及在所有费用中最小化风险的特派团保证和运营文化。我们过去的工作表明了使用多个球形跳跃机器人称为Spalex来探索这些极端环境的优势。我们以前的工作是基于对SPENTEX机器人的人类设计基线设计进行探索。然而,SPENTEX的设计是一个复杂的任务,涉及大量的设计变量和多个工程学科。在这项工作中,我们建议使用自动化的多学科设计和控制优化(AMDCO)技术,以便在不同的任务方案的Spyallx的质量,体积,功率和控制方面找到附近的最佳设计解决方案。由于模型和实施的复杂性,设计空间中的不连续,以及广泛的时间尺度和探索目标,AMDCO的实施是一种复杂的过程,以及在设计空间中的不连续性以及广泛的时间尺度和探索目标。此外,SPENTEX的设计将取决于目标环境(例如,重力,温度,辐射和表面特性),具有增加的机器人数量的协调复杂度,勘探的预期距离和预期的任务时间长度。我们通过使用基于梯度的优化技术集成的遗传算法形式的机器学习来解决这些问题,以便通过设计进行搜索

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号