首页> 外文会议>International Symposium on Managing Soils for Food Security and Climate Change Adaptation and Mitigation >Contributions of Fertilizer Nitrogen in Global Cereal Production; Soil Organic Matter Status and Nitrogen Balance
【24h】

Contributions of Fertilizer Nitrogen in Global Cereal Production; Soil Organic Matter Status and Nitrogen Balance

机译:肥料氮在全球谷物生产中的贡献;土壤有机质状态和氮气平衡

获取原文

摘要

Presently, 50 percent of the human population relies on synthetic nitrogen (N) fertilizer for food production. In the subsistence agriculture of the pre-chemical era, biological N2 fixation (BNF) was the primary source of reactive N but, in recent years, chemical N fixation (synthetic N) has become more important in global agriculture. Today, the Haber-Bosch and cultivation-induced BNF processes of converting N2 from the atmosphere to ammonia introduce reactive N of over 100 Tg N/year into the globalenvironment to increase food production (Galloway et al., 2004). Although this has sustained the large human population of Earth in meeting dietary needs, a large population in the world still lacks available N to sustain crop production. This togetherwith increasing population obviously means that the future global demand for reactive N is bound to grow substantially (Cass-man et al., 2003; Wood, Henao and Rosegrant, 2004). However, since a substantial amount of N created for food production is lostto the environment, this has also greatly increased the contribution of reactive N to a wide variety of environmental problems (Galloway etal., 2004; Vitousek ef al., 2010). Unlike nonreactive gaseous N2, reactive N has magnified the adverse effects because the same atom of N can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. This paper (i) analyses the global consumption and demand for fertilizer N in relation to cereal production, (ii) evaluates the nitrogen-15 (15N) and N difference methods to determine synthetic N recovery efficiency in current and succeeding crops grown across agro-climatic regions, (iii) examines long-term use of N on the sustenance of soil organic matter (SOM), (iv) constructs global N balances, and (v) analyses various strategies available to improve the overall use efficiency of N.
机译:目前,50%的人口依赖于合成氮(N)肥料用于食品生产。在预化学时代的生育农业中,生物N2固定(BNF)是反应性N的主要来源,但近年来,化学态固定(合成N)在全球农业中变得更加重要。如今,Haber-Bosch和培养诱导的BNF过程从大气中转化为氨的N2,将活性N引入全球环境中超过100 TG n /岁以增加食品生产(Galloway等,2004)。虽然这在满足膳食需求时,这持续了大量人口,但世界上大量的人口仍然缺乏可用的人,以维持作物生产。这一致增加人口显然意味着未来的对抗性N的全球需求必然会大幅生长(Cass-Man等,2003; Wood,Henao和Rosgrant,2004)。然而,由于对环境产生了大量的粮食生产,因此,这也大大提高了反应性N对各种环境问题的贡献(Galloway Etal,2004年; Vitousek Ef Al。,2010)。与非反应性气态N2不同,反应性N具有放大的不良反应,因为N的相同原子可能导致大气中的多种效果,陆地生态系统,淡水和海洋系统以及人类健康。本文(i)分析了与谷物生产有关肥料N的全球消费和需求,(ii)评估氮-15(15N)和N差异方法,以确定当前和后续作物中的合成N恢复效率跨越农业气候区域,(iii)在土壤有机物(SOM)的寄托上审查了N的长期使用,(iv)构建全球N天平,(v)分析可用于提高N的整体使用效率的各种策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号