首页> 外文会议>ASME Conference on Frontiers in Medical Devices: Applications of Computer Modeling and Simulation >MODELING THE ROLE OF OSCILLATORY FLOW AND DYNAMIC MECHANICAL CONDITIONING ON DENSE CONNECTIVE TISSUE FORMATION IN MESENCHYMAL STEM CELL DERIVED HEART VALVE TISSUE ENGINEERING
【24h】

MODELING THE ROLE OF OSCILLATORY FLOW AND DYNAMIC MECHANICAL CONDITIONING ON DENSE CONNECTIVE TISSUE FORMATION IN MESENCHYMAL STEM CELL DERIVED HEART VALVE TISSUE ENGINEERING

机译:建模振荡流动和动态机械调节对间充质干细胞衍生心脏瓣膜组织工程致密结缔组织形成的作用

获取原文

摘要

Living tissue engineered heart valves (TEHV) may circumvent ongoing problems in pediatric valve replacements, offering optimum hemodynamic performance and the potential for growth, remodeling, and self-repair [1]. Although a myriad of external stimuli are available in current bioreactors (e.g. oscillatory flows, mechanical conditioning, etc.), there remain significant bioengineering challenges in determining and quantifying parameters that lead to optimal ECM development and structure for the long term goal of engineering TEHVs exhibiting tissue architecture functionality equivalent to native tissue. It has become axiomatic that in vitro mechanical conditioning promotes engineered tissue formation (Figure 1), either in organ-level bioreactors or in tissue-level bioreactors with idealized-geometry TE constructs. However, the underlying mechanisms remain largely unknown. Efforts to date have been largely empirical, and a two-pronged approach involving novel theoretical developments and close-looped designed experiments is necessary to reach a better mechanistic understanding of the cause-effect interplay between MSC proliferation and differentiation, newly synthetized ECM, and tissue formation, in response to the controllable conditions such as scaffold design, oxygen tension, nutrient availability, and mechanical environment during incubation. We thus evaluate the influence of exterior flow oscillatory shear stress and dynamic mechanical conditioning on the proliferative and synthetic behavior of MSCs by employing a novel theoretical framework for TE. We employ mixture theory to describe the evolution of the biochemical constituents of the TE construct and their intertwined biochemical reactions, evolving poroelastic models to evaluate the enhancement of nutrient transport occurring with dynamic mechanical deformations, and computational fluid dynamics (CFD) to assess the exterior flow boundary conditions developed in the flex-stretch-flow (FSF) bioreactor [4-6].
机译:活组织工程的心脏瓣膜(Tehv)可能在儿科瓣膜置换中规避持续的问题,提供最佳的血液动力学性能和生长,重塑和自我修复的可能性[1]。虽然目前的生物反应器(例如振荡流动,机械调节等)中有无数的外部刺激,但在确定和定量参数方面存在显着的生物工程挑战,这些挑战导致了最佳ECM开发和结构的工程Tehvs的长期目标的参数组织架构功能相当于天然组织。它已成为公理的,在体外机械调节促进工程化组织形成(图1),无论是在器官水平的生物反应器中还是在组织级生物反应器中,具有理想的几何TE构建体。然而,潜在机制仍然很大程度上是未知的。迄今为止的努力主要是经验性的,并且需要一种涉及新颖的理论发展和近循环设计实验的双管齐下的方法,以更好地了解MSC增殖和分化,新合成的ECM和组织之间的原因相互作用形成,响应于孵化过程中的可控条件,诸如支架设计,氧气张力,营养有效性和机械环境。因此,我们通过采用新型理论框架来评估外部流动振荡剪切应力和动态机械调节对MSC的增殖和合成行为的影响。我们采用混合理论来描述Te构建体的生化成分及其交织的生化反应的演变,演化的腹腔弹性模型来评估具有动态机械变形的营养传输的增强,以及计算流体动力学(CFD)来评估外部流动柔性拉伸流动(FSF)生物反应器中开发的边界条件[4-6]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号