首页> 外文会议>Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies >Some methods of establishing a new optimal shape of the shell for an energy concentrator system
【24h】

Some methods of establishing a new optimal shape of the shell for an energy concentrator system

机译:一种建立能量集中器系统外壳新的最佳形状的一些方法

获取原文

摘要

The present work, setting its target on drawing up some methods of establishing a new optimal shape of energy concentrator, contains original contributions which can be rendered as follows: a) optimizing the shape of the shell for one type of energy concentrator system; b) finding a new profilled shell with a symmetrical profile or an assymmetrical one, in specific hypothesys for direction of flow, movement of profile on the variable surfaces; c) calculus and experimental analyses for profiled shells. The original methods developed may extended to the study of the bulb-shape or for the shape bulb-shell system, to the study of boundary layer in different types of flows for an energy concentrating systems. The fluid is incompressible, in permanent axial-symmetrical movement. The calculus of boundary layer on the profiled shells are starting with E.Boltze's equations with boundary conditions, and became the Prandtl's equations with the same boundary conditions. For better approximation of the flow's border, the boundary was considered as a sum of plane slabs of small dimensions. For each of this was calculated: Re number, the thickness of boundary layer, a tangent tension at the wall, a medium tangent tension on axial direction and a friction resistence. The obtained values for boundary layer and tangent tension from the calculus program are representative of the shels with symmetrical or asymmetrical profiles. The method used was F.E.M.. There are analized and calculated friction resistence for five types of shells with symmetrical profile and five types with asymmetrical profile, in the hypothessis of a constant velocity in the minimal section for variable angle of inclination (from -2.513~0 to +8.37~0) , depending on the length of the boundary. The best obtained values where for profiled shell NACA 4418 (-1.31~0) and NACA 0021 (+4.894~0).
机译:目前的工作,设定了绘制了一些建立新的能量集中器形状的一些方法的目标,其中包含如下所示的原始贡献:a)优化一种类型的能量集中器系统的外壳形状; b)在特定的假设中找到具有对称轮廓或紫外线的新的壳,用于流动方向,在可变表面上的移动; c)用于分析壳的微积分和实验分析。开发的原始方法可以扩展到灯泡形状或形状灯泡 - 壳系统的研究,以对能量集中系统的不同类型流中的边界层的研究。流体是不可压缩的,在永久轴向对称运动中。突出壳上的边界层的微积分从E.Boltze的方程开始,边界条件,并成为具有相同边界条件的Prandtl的方程。为了更好地逼近流的边界,边界被认为是小尺寸的平面板的总和。对于每个计算出来:RE编号,边界层的厚度,壁处的切线张力,轴向方向上的介质切线和摩擦阻力。来自微积分程序的边界层和切线张力的所获得的值代表具有对称或不对称型材的凸起。使用的方法是有限元。在最小倾角下的最小截面中的恒定速度的悬垂性中,有五种类型的壳体的分析和计算摩擦阻力,并计算了五种类型的壳体,其具有对称轮廓的五种类型的壳体和五种类型的抗摩擦抗性抗对称轮廓(从-2.513〜0开始的恒定速度到+ 8.37〜0),取决于边界的长度。最佳的值,用于分析壳Naca 4418(-1.31〜0)和Naca 0021(+ 4.894〜0)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号