【24h】

Causality Modeling and Statistical Generative Mechanisms

机译:因果建模与统计生成机制

获取原文

摘要

Causality notion lies at the heart of science, but when statistics tries to address this issue some profound questions remain unanswered. How statistical inference in probabilistic terms is linked with causality? What modern causality models offer that is substantially different from the traditional dependency models like regression or decision trees, and if yes, do they deliver these promises? How causality models are related to statistical and machine learning techniques? What is the relationship between causality modeling, statistical inference, and machine learning on one side - and operations research and optimization on the other? Or, more generally: if the causal picture of the world is a commonly accepted goal of any science, could the non-causal statistical models be of any use? If yes - in what sense? If not - why are they so widely used? The insufficient level of detail in discussions of these and similar problems creates a lot of confusion, especially now, when lauded terms like Data Mining, Big Data, Deep Learning and others appear even in the non-professional media. This paper inspects the underlying logic of different approaches, directly or indirectly, related with causality. It shows that even established methods are vulnerable to small deviations from the ideal setting; that the leading approaches to statistical causality, Structural Equations Modeling (SEM), Directed Acyclic Graphs (DAG) and Potential Outcomes (PO) theories do not provide a coherent causality theory, and argues that this theory is impossible on pure statistical grounds. It also discusses a new approach in which the concept of causality is replaced by the concept of dependent variable generation. Separation of the variables generating the outcome from others just correlated with it (which often separates also causal from non-causal variables) is proposed.
机译:因果概念在于科学的核心,但是当统计数据试图解决这个问题时,一些深刻的问题仍未得到应答。概率术语的统计推断是如何与因果关系相关联?现代因果型模型提供的优惠与转运或决策树等传统依赖模型不同,如果是,他们是否提供了这些承诺?因果关系模型如何与统计和机器学习技术有关?因果关系建模,统计推理和机器学习对另一方的关系 - 以及其他对方的关系是什么?或者,更一般:如果世界的因果图片是任何科学的常用目标,则非因果统计模型可以使用吗?如果是的话 - 在什么意义上?如果不是 - 为什么他们如此广泛使用?这些和类似问题的讨论中的细节水平不足会产生很多混乱,特别是现在,当像数据挖掘一样的赞美术语,大数据,深度学习和其他甚至在非专业媒体上出现时。本文直接或间接地检查不同方法的潜在逻辑,与因果关系有关。它表明,即使是建立的方法易受理想环境的小偏差;统计因果关系的主要方法,结构方程模型(SEM),指导的非循环图(DAG)和潜在结果(PO)理论不提供相干因果关系,并认为该理论对纯统计场不可能。它还讨论了一种新的方法,其中因因变量一代的概念代替了因果关系的概念。提出了从其他刚相关的变量的分离(通常与非因果变量分离)相关的其他结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号