首页> 外文会议>International ESAFORM Conference on Material Forming >Numerical-experimental Investigation Of Load Paths in DP800 Dual Phase Steel During Nakajima Test
【24h】

Numerical-experimental Investigation Of Load Paths in DP800 Dual Phase Steel During Nakajima Test

机译:Nakajima试验期间DP800双相钢负载路径的数值实验研究

获取原文

摘要

Fuel efficiency requirements demand lightweight construction of vehicle body parts. The usage of advanced high strength steels permits a reduction of sheet thickness while still maintaining the overall strength required for crash safety. However, damage, internal defects (voids, inclusions, micro fractures), microstructural defects (varying grain size distribution, precipitates on grain boundaries, anisotropy) and surface defects (micro fractures, grooves) act as a concentration point for stress and consequently as an initiation point for failure both during deep drawing and in service. Considering damage evolution in the design of car body deep drawing processes allows for a further reduction in material usage and therefore body weight. Preliminary research has shown that a modification of load paths in forming processes can help mitigate the effects of damage on the material. This paper investigates the load paths in Nakajima tests of a DP800 dual phase steel to research damage in deep drawing processes. Investigation is done via a finite element model using experimentally validated material data for a DP800 dual phase steel. Numerical simulation allows for the investigation of load paths with respect to stress states, strain rates and temperature evolution, which cannot be easily observed in physical experiments. Stress triaxiality and the Lode parameter are used to describe the stress states. Their evolution during the Nakajima tests serves as an indicator for damage evolution. The large variety of sheet metal forming specific load paths in Nakajima tests allows a comprehensive evaluation of damage for deep drawing. The results of the numerical simulation conducted in this project and further physical experiments will later be used to calibrate a damage model for simulation of deep drawing processes.
机译:燃油效率要求需求轻量级的车身部件建设。先进的高强度钢的使用允许减少片材厚度,同时保持碰撞安全所需的总体强度。然而,损伤,内部缺陷(空隙,夹杂物,微骨折),微观结构缺陷(不同的晶粒尺寸分布,对晶界,各向异性)和表面缺陷(微骨折,凹槽)充当应力的浓度点,因此深度绘制和服务期间失效的启动点。考虑到车身设计设计中的损伤演变,允许进一步减少材料使用,因此体重。初步研究表明,在形成过程中的负载路径的改变可以帮助减轻损伤对材料的影响。本文研究了DP800双相钢的Nakajima测试中的负载路径,以研究深层拉伸过程中的损坏。通过用于DP800双相钢的实验验证的材料数据,通过有限元模型进行调查。数值模拟允许对应力状态,应变速率和温度演化的负载路径调查,在物理实验中不能容易地观察到。应力三轴性和洛登参数用于描述应力状态。他们在Nakajima测试期间的演变用作损坏进化的指标。在Nakajima测试中形成特定负载路径的各种金属板允许综合评估深图造成的损坏。在该项目中进行的数值模拟的结果和进一步的物理实验将稍后将用于校准模拟深拉工艺的损伤模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号