首页> 外文会议>SPIE Conference on High-Performance Computing in Geoscience and Remote Sensing >Spatial-Spectral Preprocessing for Endmember Extraction on GPU's
【24h】

Spatial-Spectral Preprocessing for Endmember Extraction on GPU's

机译:适用于GPU的Endmember提取的空间光谱预处理

获取原文

摘要

Spectral unmixing is focused in the identification of spectrally pure signatures, called endmembers, and their corresponding abundances in each pixel of a hyperspectral image. Mainly focused on the spectral information contained in the hyperspectral images, endmember extraction techniques have recently included spatial information to achieve more accurate results. Several algorithms have been developed for automatic or semi-automatic identification of endmembers using spatial and spectral information, including the spectral-spatial endmember extraction (SSEE) where, within a preprocessing step in the technique, both sources of information are extracted from the hyperspectral image and equally used for this purpose. Previous works have implemented the SSEE technique in four main steps: 1) local eigenvectors calculation in each sub-region in which the original hyperspectral image is divided; 2) computation of the maxima and minima projection of all eigenvectors over the entire hyperspectral image in order to obtain a candidates pixels set; 3) expansion and averaging of the signatures of the candidate set; 4) ranking based on the spectral angle distance (SAD). The result of this method is a list of candidate signatures from which the endmembers can be extracted using various spectral-based techniques, such as orthogonal subspace projection (OSP), vertex component analysis (VCA) or N-FINDR. Considering the large volume of data and the complexity of the calculations, there is a need for efficient implementations. Latest-generation hardware accelerators such as commodity graphics processing units (GPUs) offer a good chance for improving the computational performance in this context. In this paper, we develop two different implementations of the SSEE algorithm using GPUs. Both are based on the eigenvectors computation within each sub-region of the first step, one using the singular value decomposition (SVD) and another one using principal component analysis (PCA). Based on our experiments with hyperspectral data sets, high computational performance is observed in both cases.
机译:光谱解密集中在识别频谱纯签名,称为终端,以及它们在高光谱图像的每个像素中的对应丰度。主要专注于高光谱图像中包含的光谱信息,最近包括空间信息以实现更准确的结果。已经开发了几种算法,用于使用空间和光谱信息自动或半自动识别终端终端,包括频谱空间终端补充(SSEE),其中在该技术的预处理步骤中,来自Hyperspectral图像中的两个信息源并且同样用于此目的。以前的作品已经在四个主要步骤中实现了SSEE技术:1)本地特征向量在原始超光图像分割的每个子区域中计算; 2)在整个高光谱图像上计算所有特征向量的最大值和最小值的投影,以便获得候选候选像素; 3)候选集的签名的扩张和平均; 4)基于光谱角度距离(SAD)的排序。该方法的结果是可以使用各种基于频谱的技术来提取终端的候选签名列表,例如正交子空间投影(OSP),顶点分量分析(VCA)或N-FindR。考虑到大量数据和计算的复杂性,需要有效的实现。商品图形处理单元(GPU)等最新一代硬件加速器提供了提高此上下文中的计算性能的良好机会。在本文中,我们使用GPU开发了SSEE算法的两种不同实现。两者都基于第一步的每个子区域内的特征向量计算,一个使用奇异值分解(SVD)和使用主成分分析(PCA)的另一个。基于我们对高光谱数据集的实验,两种情况下都观察到高计算性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号