首页> 外文会议>High-performance computing in remote sensing VI >Spatial-Spectral Preprocessing for Endmember Extraction on GPU's
【24h】

Spatial-Spectral Preprocessing for Endmember Extraction on GPU's

机译:在GPU上提取末端成员的空间谱预处理

获取原文
获取原文并翻译 | 示例

摘要

Spectral unmixing is focused in the identification of spectrally pure signatures, called endmembers, and their corresponding abundances in each pixel of a hyperspectral image. Mainly focused on the spectral information contained in the hyperspectral images, endmember extraction techniques have recently included spatial information to achieve more accurate results. Several algorithms have been developed for automatic or semi-automatic identification of endmembers using spatial and spectral information, including the spectral-spatial endmember extraction (SSEE) where, within a preprocessing step in the technique, both sources of information are extracted from the hyperspectral image and equally used for this purpose. Previous works have implemented the SSEE technique in four main steps: 1) local eigenvectors calculation in each sub-region in which the original hyperspectral image is divided; 2) computation of the maxima and minima projection of all eigenvectors over the entire hyperspectral image in order to obtain a candidates pixels set; 3) expansion and averaging of the signatures of the candidate set; 4) ranking based on the spectral angle distance (SAD). The result of this method is a list of candidate signatures from which the endmembers can be extracted using various spectral-based techniques, such as orthogonal subspace projection (OSP), vertex component analysis (VCA) or N-FINDR. Considering the large volume of data and the complexity of the calculations, there is a need for efficient implementations. Latest-generation hardware accelerators such as commodity graphics processing units (GPUs) offer a good chance for improving the computational performance in this context. In this paper, we develop two different implementations of the SSEE algorithm using GPUs. Both are based on the eigenvectors computation within each sub-region of the first step, one using the singular value decomposition (SVD) and another one using principal component analysis (PCA). Based on our experiments with hyperspectral data sets, high computational performance is observed in both cases.
机译:光谱分解主要集中在识别光谱纯特征(称为端成员)及其在高光谱图像的每个像素中的对应丰度。端成员提取技术主要关注于高光谱图像中包含的光谱信息,最近已包括空间信息以实现更准确的结果。已经开发了几种用于使用空间和光谱信息自动或半自动识别末端成员的算法,包括光谱空间末端成员提取(SSEE),其中在该技术的预处理步骤中,两个信息源均从高光谱图像中提取并同样用于此目的。先前的工作已在四个主要步骤中实现了SSEE技术:1)在划分原始高光谱图像的每个子区域中进行局部特征向量计算; 2)计算所有特征向量在整个高光谱图像上的最大和最小投影,以获得候选像素集; 3)扩展和平均候选集的签名; 4)基于光谱角距离(SAD)进行排名。此方法的结果是候选签名列表,可以使用各种基于光谱的技术从这些候选签名中提取末端成员,例如正交子空间投影(OSP),顶点分量分析(VCA)或N-FINDR。考虑到大量数据和计算的复杂性,需要有效的实现。在这种情况下,最新一代的硬件加速器(例如商用图形处理单元(GPU))为改善计算性能提供了很好的机会。在本文中,我们使用GPU开发了两种不同的SSEE算法实现。两者均基于第一步的每个子区域内的特征向量计算,一个使用奇异值分解(SVD),另一个使用主成分分析(PCA)。根据我们对高光谱数据集的实验,在两种情况下均观察到了很高的计算性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号