首页> 外文会议>ACS National Meeting and Exhibition >ENGINEERING THE MICROSTRUCTURE AND CHEMISTRY OF BOTH QUANTUM DOTS AND PHOTOANODES IN QUANTUM-DOT SENSITIZED SOLAR CELLS FOR HIGH POWER CONVERSION EFFICIENCY
【24h】

ENGINEERING THE MICROSTRUCTURE AND CHEMISTRY OF BOTH QUANTUM DOTS AND PHOTOANODES IN QUANTUM-DOT SENSITIZED SOLAR CELLS FOR HIGH POWER CONVERSION EFFICIENCY

机译:Quantum-Dot敏化太阳能电池中量子点和光阳极的微观结构和化学,高功率转换效率

获取原文

摘要

Quantum dot-sensitized solar cells (QDSCs) as a derivative of dye-sensitized solar cells (DSCs) have attracted considerable attention and been regarded as a promising alternative to conventional solid-state semiconductor solar cells. QDSCs are relatively cost-effective and easy to manufacture, and furthermore, compared to organic dyes, narrow band gap semiconductor QDs possess multiple extraordinary optical and electrical properties in terms of (1) tunable band gap across a wide energy range, (2) strong light absorption, (3) high stability against oxidative deterioration, (4) high extinction coefficients, and (5) large intrinsic dipole moment facilitating charge separation. A high theoretical photovoltaic conversion efficiency up to 44% in view of the multiple excitation generation (MEG) effect, beyond the traditional Shockley and Queisser limit of 32% for semiconductor solar cell, has encouraged people to develop QDSCs with the use of CdS, CdSe, CdTe, PbS, and Ag2S QDs, as sensitizers for light harvesting. Furthermore, some co-sensitization systems, especially the combination of CdS and CdSe QDs, have also been widely studied. However, the power conversion efficiency of these QDSCs, typically with the efficiency of 1-5%, still lags far behind ~ 12% of DSCs. Obviously efforts are needed to get a better fundamental understanding so as to develop the materials and nano/micro-structures for the QDSCs to achieve high power conversion efficiency and explore the full potential of the QDSCs. Two approaches are explored to improve the power conversion efficiency: (1) manipulation of the nano and microstructufes and surface chemistry of the wide bandgap semiconductor oxide photoanodes with efficient quantum dots deposition and desirable internal light scattering, and (2) alignment and controlled variation of the bandgaps of quantum dots through ion exchange.
机译:量子点敏化太阳能电池(QDSC)作为染料敏化太阳能电池(DSCs)的衍生物引起了相当大的关注,并且被认为是传统固态半导体太阳能电池的有希望的替代品。 QDSCS是相对成本效益且易于制造的,而且与有机染料相比,窄带隙半导体QDS在宽能量范围内(2)强度横跨(2)强大的可调谐带隙具有多种非凡的光学和电性能。(2)强光吸收,(3)抗氧化劣化的高稳定性,(4)高消光系数,(5)大型内在偶极力矩促进电荷分离。鉴于多种励磁生成(MEG)效应,高于44%的高度高达44%,超出了传统的Shockley和32%的半导体太阳能电池的批准限额,鼓励人们通过使用CDS,CDSE开发QDSC ,Cdte,PBS和AG2S QD,作为敏感剂,用于光收获。此外,还广泛研究了一些共同敏化系统,尤其是CD和CDSE QD的组合。然而,这些QDSC的功率转换效率通常为1-5%的效率,仍然滞后于DSC的〜12%。显然需要努力来获得更好的基础理解,以便开发QDSC的材料和纳米/微结构,以实现高功率转换效率并探索QDSC的全部潜力。探索了两种方法以提高功率转换效率:(1)用有效量子点沉积和理想的内光散射的宽带半导体氧化物光耦合的纳米和微结构化和表面化学的操纵,(2)对准和控制变化量子点通过离子交换的带隙。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号