首页> 外文会议>Conference of International Sports Engineering Association >Thermal modeling in mountain bike air shocks
【24h】

Thermal modeling in mountain bike air shocks

机译:山地自行车空气冲击的热建模

获取原文

摘要

The demands on mountain bike (MTB) components continue to grow as the sport matures. Components are driven toward increased functionality, reliability, and weight savings. In the arena of mountain bike rear shocks, air shocks lead the way in both weight savings and user adjustment over their coil spring counterparts. Not only do air shocks allow multiple controls over both compression and rebound damping but they also allow easy control for rider sag, adjusting for varied sized riders and rider suspension travel preferences. They do so with significant weight saving over coil spring competitors. A downside to air shocks over coil are the thermal issues surrounding housing an air spring concentric with the shock damping mechanism as well as the seal-friction issues associated with containing the air. The continual compressing of the air and the air seal friction are thermal dynamics that coil shocks do not experience. Also, the insulation of the damper mechanism by the air spring constrains more heat in the air shock. The net result of these thermal complexities is that air shocks typically get much hotter than coil shocks and as such cannot easily be used in continual high load riding scenarios such as downhill racing and long distance downhill riding. This paper examines some of these issues by developing a mountain bike rear air shock model incorporating air spring and frictional thermal effects. Heat is generated by compression and friction, stored in material and air thermal capacitances, and transferred between system elements and eventually to atmosphere. Damper energy generation effects are ignored in this paper and saved for a future study. The effects of shock design on thermal time constants and maximum temperatures are evaluated. Certain model predictions are compared to laboratory data.
机译:随着运动成熟的情况,对山地自行车(MTB)组件的要求继续增长。组件朝着增加的功能,可靠性和重量节省。在山地自行车后冲击的竞技场中,空气冲击引发了重量储蓄和用户调整的方式,通过它们的螺旋弹簧对应物。空气冲击不仅允许多次控制压缩和反弹阻尼,但它们还可以轻松控制骑手凹陷,调整各种大小的骑手和骑手悬架旅行偏好。它们具有显着的重量储蓄,螺旋弹簧竞争对手。在线圈上的空气震动的缺点是围绕外壳的热问题,空气弹簧与减震机构同心,以及与含有空气相关的密封摩擦问题。空气和空气密封摩擦的连续压缩是线圈冲击不会经历的热动力学。而且,通过空气弹簧的阻尼机构的绝缘在空气冲击中限制了更多的热量。这些热复杂性的净结果是,空气冲击通常比线圈冲击更热,因此不能轻易使用在连续的高负荷骑行场景中,例如下坡赛车和长距离下坡骑行。本文通过开发包含空气弹簧和摩擦热效应的山地自行车后空气冲击模型来检查一些问题。通过压缩和摩擦,储存在材料和空气热电容中的压缩和摩擦产生热量,并在系统元件之间传递并最终转移到大气之间。本文忽略了阻尼能源生成效果,并为未来的研究保存。评估休克设计对热时间常数和最大温度的影响。将某些模型预测与实验室数据进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号