首页> 外文会议>Carbon Management Technology Conference >The Effects of Anisotropy and Heterogeneity on CO2 Dissolution in Deep Saline Aquifers
【24h】

The Effects of Anisotropy and Heterogeneity on CO2 Dissolution in Deep Saline Aquifers

机译:各向异性和异质性对水稻水稻水稻二氧化碳溶解的影响

获取原文

摘要

Storage of CO2 into geological formations is a reasonable technical choice for decreasing carbon dioxide emissions to the atmosphere. The dissolution of supercritical CO2 in formation water is one of the main long term trapping mechanisms for CO2 storage into saline aquifers. Convective mixing is predicted to occur, which accelerates the dissolution of carbon dioxide in the saline formation water. This unusual phenomenon arises from the increase in the density of brine when saturated with carbon dioxide. Several factors influence the performance and long-term fate of CO2 injection into deep saline formations. The efficiency of mixing in density-driven natural convection is largely governed by aquifer permeability which is heterogeneous in practice. For deep injection of CO2 in deep saline formations, the movement of both free gas and dissolved CO2 are sensitive to variations in permeability. In this paper, the effects of anisotropy and different kinds of heterogeneity like horizontal and vertical layers and also existence of barriers between layers on the CO2 dissolution in a saturated porous media with brine are investigated using simulation methods. Also the performance of naturally fractured systems and the effective dissolution mechanisms in CO2 storage in such these systems are investigated. Following to simulation results it can be said that the permeability of the system and the permeability anisotropy ratio should be considered as the most important parameters in convective mixing process. In the barrier systems, the geometry of the barriers has a large effect on the density- driven natural convection while in layers systems, the vertical and horizontal location of the layers and also the degree of heterogeneity can be so important. In the case of natural fractured systems and based on the simulation studies on a single block fractured model, it can be said that density-driven natural convection is an effective dissolution mechanism in naturally fractured aquifers.
机译:将二氧化碳储存成地质形成是一种合理的技术选择,可降低对大气的二氧化碳排放。超临界CO2在地层水中的溶解是CO 2储存到盐水含水层中的主要长期捕获机制之一。预测对流混合发生,这加速了盐水形成水中二氧化碳的溶解。用二氧化碳饱和时,这种不寻常的现象来自盐水密度的增加。几个因素会影响二氧化碳注射到深盐形成的性能和长期命运。密度驱动的自然对流中混合的效率主要受到在实践中异质的含水层渗透性的。为了深入注射深盐地层的CO 2,游离气体和溶解的CO2的运动对渗透性的变化敏感。在本文中,使用模拟方法研究了水平和垂直层等各向异性和不同种类异质性的影响,以及在饱和多孔介质中的二氧化碳介质中的层叠中的层之间的屏障的存在。还研究了这种系统中自然裂缝系统的性能和CO 2储存中的有效溶解机制。在仿真结果之后,可以说系统的渗透性和渗透性各向异性比应被视为对流混合过程中最重要的参数。在阻挡系统中,屏障的几何形状对密度驱动的自然对流具有很大的影响,而在层系统中,层的垂直和水平位置以及异质性的程度可能是如此重要的。在天然裂缝系统的情况下,基于单块裂缝模型的仿真研究,可以说密度驱动的自然对流是天然骨折含水层中有效的溶解机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号