首页> 外文会议>Carbon Management Technology Conference >Improved Force Balance for Predicting Vertical Migration of CO2 from Geologic Sequestration Sites
【24h】

Improved Force Balance for Predicting Vertical Migration of CO2 from Geologic Sequestration Sites

机译:改进了从地质螯合位点预测CO2垂直迁移的力平衡

获取原文

摘要

The goal of this work is to develop an improved model of CO2 bubble rise through porous media in the deep subsurface. Under the geologic carbon sequestration (GCS) conditions of interest, a rising parcel of CO2 will be subject to at least three dynamic forces: 1) buoyant forces; 2) surface tension forces; and 3) shear drag forces. To fully characterize these, this work involved several experimental measurements focused on the second and third forces in particular. To better understand the effect of shear drag forces, the viscosity of brines was explored under bubbly flow scenarios to understand the rheological conditions that might impact leakage. To better understand the role of surface tension forces on influencing flow, contact angle measurements were carried out for a range of relevant mineral, brine, CO2 combinations. Predicting leakage from geologic carbon sequestration sites is difficult because of the large length scales that are involved and because of the complex geophysics and geochemistry that a rising parcel of CO2 will be subject to as it travels to the surface. To better understand how quickly and where a parcel of CO2 is likely to escape, better modeling tools are needed. These tools must be based on experimental results collected for GCS-relevant conditions. The results of the brine viscosity work suggest that under vapor liquid equilibrium (VLE) conditions CO2-brine mixtures will exhibit complex viscoelastic behavior. This is because CO2 bubbles in the matrix will respond to the varying levels of shear that will exist in the porous media to resist flow. Similarly, the contact angle measurements suggest that CO2 is less wetting of some common minerals and clays that prevail near GCS sites. The experimental results described here will be used to describe an enhanced model of CO2 vertical flow through the subsurface. At smaller scales, this enhanced model could help explain preferential flow pathways and potential hysteresis that could influence leakage from GCS sites. At larger scales, the results of this work could contribute to more accurate prediction tools for managing the risk associated with GCS.
机译:这项工作的目标是通过深层地下的多孔介质制定一种改进的CO2泡沫模型。在地质碳封存(GCS)的感兴趣条件下,上升的CO 2将受到至少三个动态力:1)浮力; 2)表面张力; 3)剪切阻力。为了充分表征这些,这项工作涉及若干专注于第二和第三部队的实验测量。为了更好地了解剪切阻力的效果,在起泡流程下探讨了盐水的粘度,以了解可能影响泄漏的流变条件。为了更好地了解表面张力对影响流动的作用,对一系列相关矿物质,盐水,二氧化碳组合进行了接触角测量。由于所涉及的大长度尺度,并且由于复杂的地球物理学和地球化学,因此较大的地球物理学和地块的CO 2将受到行进到表面的影响,因此难以预测地质碳螯合位点的泄漏。为了更好地了解一块CO2可能逃脱的速度,需要更好的建模工具。这些工具必须基于为GCS相关条件收集的实验结果。盐水粘度工作的结果表明,在蒸汽液体平衡(VLE)条件下,CO2-盐水混合物将表现出络合物的粘弹性行为。这是因为基质中的CO2气泡将响应多孔介质中的剪切水平以抵抗流动。类似地,接触角测量表明CO2润湿的一些常见的矿物质和粘土在GCS位点附近的含量。这里描述的实验结果将用于描述通过地下的CO2垂直流的增强模型。在较小的尺度下,这种增强型模型可以帮助解释可能影响GCS位点泄漏的优先流动途径和潜在滞后。在较大的尺度上,这项工作的结果可能有助于管理与GCS相关的风险的更准确的预测工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号