首页> 外文会议>American Institute of Chemical Engineers Annual Meeting >APPLICATION OF LINEAR MULTIPLE MODEL PREDICTIVE CONTROL (MMPC) FRAMEWORK TOWARDS DYNAMIC MAXIMIZATION OF OXYGEN YIELD IN AN ELEVATED-PRESSURE AIR SEPARATION UNITDPriyadarshi Mahapatra Advanced Virtual Energy Simulation Training and Research (AVESTAR~(TM)) Center National Energy Technology Laboratory, U.S. Department of Energy URS Corporation, 3592 Collins Ferry Road (Suite 160), Morgantown, WV 26505, USAMpriyadarshi.mahapatra@netl.doe.gov
【24h】

APPLICATION OF LINEAR MULTIPLE MODEL PREDICTIVE CONTROL (MMPC) FRAMEWORK TOWARDS DYNAMIC MAXIMIZATION OF OXYGEN YIELD IN AN ELEVATED-PRESSURE AIR SEPARATION UNITDPriyadarshi Mahapatra Advanced Virtual Energy Simulation Training and Research (AVESTAR~(TM)) Center National Energy Technology Laboratory, U.S. Department of Energy URS Corporation, 3592 Collins Ferry Road (Suite 160), Morgantown, WV 26505, USAMpriyadarshi.mahapatra@netl.doe.gov

机译:线性多模型预测控制(MMPC)框架在高压空气分离中氧气产量动态最大化的应用升级 Priyadarshi Mahapatra先进的虚拟能量仿真培训和研究(Avestar〜(TM))中心国家能源技术实验室,美国部能源Urs Corporation,3592 Collins Ferry Road(套房160),Morgantown,WV 26505,USAM Priyadarshi.Mahapatra@netl.doe.gov

获取原文

摘要

In a typical air separation unit (ASU) utilizing either a simple gaseous oxygen (GOX) cycle or a pumped liquid oxygen (PLOX) cycle, the flowrate of liquid nitrogen (LN2) stream connecting high-pressure and low-pressure ASU columns plays an important role in the total oxygen yield. It has been observed that this yield reaches a maximum at a certain optimal flowrate of LN2 stream. At nominal full-load operation, the flowrate of LN2 stream is maintained near this optimum value, whereas at part-load conditions this flowrate is typically modified in proportion with the load-change (oxygen demand) through a ratio/feed-forward controller. Due to nonlinearity in the entire ASU process, the ratio-modified LN2 flowrate does not guarantee an optimal oxygen yield at part-load conditions. This is further exacerbated when process disturbances in form of “cold-box” heat-leaks enter the system. To address this problem of dynamically maximizing the oxygen yield while the ASU undergoes a load-change and/or a process disturbance, a multiple model predictive control (MMPC) algorithm is proposed. This approach has been used in previous studies to handle large ramp-rates of oxygen demand posed by the gasifier in an IGCC plant. In this study, the proposed algorithm uses linear step-response “blackbox” models surrounding the operating points corresponding to maximum oxygen yield points at different loads. It has been shown that at any operating point of the ASU, the MMPC algorithm, through model-weight calculation based on plant measurements, naturally and continuously selects the dominant model(s) corresponding to the current plant state, while making control-move decisions that approach the maximum oxygen yield point. This dynamically facilitates less energy consumption in form of compressed feed-air compared to a simple ratio control during load-swings. In addition, since a linear optimization problem is solved at each time step, the approach involves much less computational cost compared to a first- principle based nonlinear MPC.
机译:在典型的空气分离单元(ASU)中利用简单的气态氧(GOX)循环或泵送的液体氧(PLOX)循环,液氮(LN2)流的流量连接高压和低压ASU列的流量播放在总氧产量中的重要作用。已经观察到,该产量在LN2流的某个最佳流量下达到最大值。在标称全负载操作处,LN2流的流量保持在该最佳值附近,而在部分负载条件下,该流量通常通过比例/前馈控制器的负载变化(氧需求)比例进行修改。由于整个ASU过程中的非线性,比率改性的LN2流量不保证部分负载条件下的最佳氧产率。当“冷箱”热泄漏形式的过程干扰进入系统时,这进一步加剧了这一点。为了解决动态地最大化氧气产量而ASU经历负载变化和/或过程干扰,提出了一种多模型预测控制(MMPC)算法。在先前的研究中,这种方法已经用于处理IGCC植物中气​​化器造成的氧气需求的大斜坡率。在本研究中,所提出的算法使用线性阶跃响应“BlackBox”模型,围绕对应于不同负载的最大氧屈服点的操作点。已经表明,在ASU的任何操作点,MMPC算法,通过基于工厂测量的模型重量计算,自然地和连续地选择对应于当前植物状态的主要模型,同时制作控制移动决策这接近最大氧屈服点。与在负载摇摆期间的简单比例控制相比,这种动态促进了压缩进料空气形式的能量消耗。另外,由于在每次步骤中解决了线性优化问题,因此与基于第一原理的非线性MPC相比,该方法涉及计算成本的更少。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号