首页> 外文会议>STLE/ASME Joint International Tribology Conference >CRITICAL REVIEW OF ELASTIC CONFORMING ROUGH SURFACE MODEL WITH ADHESION AND ITS APPLICATION TO PREDICT THERMAL AND ELECTRICAL CONTACT RESISTANCE
【24h】

CRITICAL REVIEW OF ELASTIC CONFORMING ROUGH SURFACE MODEL WITH ADHESION AND ITS APPLICATION TO PREDICT THERMAL AND ELECTRICAL CONTACT RESISTANCE

机译:具有粘附性的弹性符合粗糙表面模型的关键综述及其应用预测热电接触电阻

获取原文

摘要

Adhesion dominates at low contact pressures and the study of rough surfaces has received considerable attention due to advances in design and fabrication of micro and nano devices. It has been seen by a number of researchers that real area of contact cannot be accurately predicted at low contact pressures. This paper focuses on the asperity contact physics at low loads. As a first step, the single asperity adhesion model is expressed in dimensionless forms with size and depth of indentation as function of load. These relationships were then incorporated in the real area and load expressions of the rough surface model. It is found that a dimensionless surface energy parameter γ{sup}* = γ/(E'β) and three other surface parameters were required to implement the model. Most of the surface parameters are strongly dependant on the sampling interval. Hence a methodology is developed to incorporate the effect of sampling interval. The results of the surface adhesion model were then incorporated into the Thermal Contact Conductance (TCC) and Electrical Contact Resistance Models (ECR). Then the TCC model is used to predict experimental results for Ni200 and SS304 interfaces. Comparison of model against data shows that Ni200 data is closer to γ{sup}* = 10{sup}(-3) and SS304 data is closer to γ{sup}* = 10{sup}(-6). In general there is a trend for low load data to lie closer to the larger value γ{sup}* than the higher load data. One important conclusion is that low load may not refer to low contact pressure or load but refers to higher interface separation. A second important conclusion is that the surface parameter variation due to sampling interval plays a larger role than the adhesion parameter itself.
机译:粘合力在低接触压力下占主导地位,并且由于微型和纳米器件的设计和制造的进步,粗糙表面的研究得到了相当大的关注。已经看到了许多研究人员,即不能在低接触压力下准确地预测触点的真实接触区域。本文侧重于低负荷下的粗糙接触物理。作为第一步,单个粗糙粘合模型以无量纲形式表示,其尺寸和深度为载荷的函数。然后将这些关系结合在真实区域和粗糙表面模型的负载表达中。发现,需要无量纲的表面能量参数γ{sup} * =γ/(e'β)和三个其他表面参数来实现模型。大多数表面参数都强烈取决于采样间隔。因此,开发了一种方法来包含采样间隔的效果。然后将表面粘合模型的结果纳入热接触电导(TCC)和电接触电阻模型(ECR)中。然后,TCC模型用于预测NI200和SS304界面的实验结果。模型与数据模型的比较表明,NI200数据更接近γ{sup} * = 10 {sup}( - 3),SS304数据越靠近γ{sup} * = 10 {sup}( - 6)。通常,存在低负载数据的趋势,使得更靠近较大的值γ{sup} *而不是较高的负载数据。一个重要的结论是低载荷可能不指的是低接触压力或负载,而是指更高的界面分离。第二重要结论是,由于采样间隔引起的表面参数变化比粘附参数本身起作用更大的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号