首页> 外文会议>AIChE Annual Meeting >Carbon Capture Using Carbonic Anhydrase-Displaying Escherichia coli in Biologically Active Foams
【24h】

Carbon Capture Using Carbonic Anhydrase-Displaying Escherichia coli in Biologically Active Foams

机译:在生物活性泡沫中使用碳酸酐酶显示大肠杆菌碳捕获

获取原文

摘要

In recent years, global climate change as the result of greenhouse gas emissions, especially those of CO2, has become of great concern. Many technologies have been studied and employed to capture post-combustion CO2 such as absorption and adsorption (Artanto et al., 2014; Padurean et al., 2012), membrane technology (Low et al., 2013), ionic liquid technology (Albo et al., 2010; Stevanovic et al., 2013), metal-organic frameworks (Cao et al., 2013), and biological methods (Migliardini et al., 2014; Pires et al., 2012). However, current methods have several drawbacks that make them expensive or limit their practical application. Adsorption and absorption have the problems of regeneration of spent media and storage of captured CO2. Media regeneration often requires temperature or pressure swings, which therefore require additional energy input, and the storage or usage of captured and concentrated CO2 can be expensive (Mores et al., 2012; Olajire, 2010; Yu, 2012). Furthermore, the commonly used amine solutions can be corrosive, requiring frequent mechanical maintenance, and they are also degraded by O2, SOx, and NOx present in flue gas, leading to overall poor performance in the long term (Dumee et al., 2012). Ionic liquid solutions often must be highly viscous when they are task-specified for carbon capture and the multitude of possible cation-anion combinations makes it difficult to design the optimum formulation (Hasib-ur-Rahman et al., 2010). Membrane separation technologies need pressurization or feed compensation to be able to remove CO2 at low concentrations such as in flue gas (Low et al., 2013). Furthermore, the large volume of flue gas would require a large membrane for appropriate surface area.
机译:近年来,由于温室气体排放,特别是二氧化碳的气候变化,尤其是二氧化碳的气候变化,已成为极大的关注。已经研究了许多技术,并用于捕获燃烧后的CO2,例如吸收和吸附(Artanto等,2014; Padurean等,2012),膜技术(低等,2013),离子液体技术(ALBO等,2010;史蒂图诺特等,2013),金属有机框架(Cao等,2013)和生物学方法(Migliardini等,2014; Pires等,2012)。然而,目前的方法具有几个缺点,使它们昂贵或限制其实际应用。吸附和吸收具有废介质再生的问题和捕获的CO2的储存。媒体再生通常需要温度或压力波动,因此需要额外的能量输入,捕获和集中的CO2的存储或使用可能很昂贵(Mores等,2012; Olajire,2010; Yu,2012)。此外,常用的胺溶液可以是腐蚀性的,需要频繁的机械维持,并且它们也受到烟道气中的O2,SOX和NOx降解,导致长期的总体表现(Dumee等,2012) 。离子液体溶液通常必须是高度粘性的,当为碳捕获规定的任务指定,并且众多可能的阳离子组合使得难以设计最佳制剂(Hasib-Ur-Rahman等,2010)。膜分离技术需要加压或进料补偿,以便能够以低浓度(例如烟气)(低等,2013)以低浓度去除CO 2。此外,大量的烟道气将需要一个适当的表面积的大膜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号