首页> 外文会议>International Conference on Materials for Advanced Technologies >Enabling the study of stress states using in situ μSXRD in the silicon nanowire anode during electrochemical lithiation in a specially designed Li-ion battery test cell
【24h】

Enabling the study of stress states using in situ μSXRD in the silicon nanowire anode during electrochemical lithiation in a specially designed Li-ion battery test cell

机译:在专门设计的锂离子电池测试电池中,在电化学锂化过程中,在硅纳米线阳极中使用原位μSXRD在硅纳米线阳极中研究

获取原文

摘要

Synchrotron X-ray microdiffraction has proven to be effective in revealing insights of mechanical stress and other mechanics considerations in small scale crystalline structures in many important technological applications, such as microelectronics, nanotechnology and energy systems. In the present study, a special Li-ion battery test cell was designed to enable an in situ synchrotron X-ray microdiffraction experiment to elucidate the mechanical stress states during the first electrochemical cycle of lithiation in single-crystalline silicon nanowires (SiNWs). Silicon is considered as a promising anode material for the next generation lithium-ion battery due to its high capacity at nanoscale. However, silicon expands up to 300% during lithiation, which induces high stresses and leads to fractures. To design silicon nanostructures that could minimize fracture, it is important to understand and characterize stress states in the silicon nanostructures during lithiation. The stress of the crystalline core of the SiNWs during electrochemical lithiation was determined (at different levels of the electrochemical lithiation) using the in situ synchrotron X-ray microdiffraction technique. We found that the crystalline core of the SiNWs became highly compressive (up to -?325.5 MPa) once lithiation started. This finding helps unravel insights about mechanical stress states in the SiNWs during the electrochemical lithiation, which could potentially pave the path to fracture-free design of silicon nanostructure anode materials in the next generation lithium-ion battery.
机译:Synchrotron X射线Microdiffractive已经证明有效地揭示了在许多重要的技术应用中的小规模晶体结构中的机械应力和其他力学考虑的见解,例如微电子,纳米技术和能量系统。在本研究中,设计了一种特殊的锂离子电池测试电池,以使原位同步X射线微量微量微量实验能够在单晶硅纳米线(SINWS)中的第一电化学循环期间阐明机械应力状态。由于其在纳米级容量的高容量,硅被认为是下一代锂离子电池的有希望的阳极材料。然而,硅在锂化期间膨胀至300%,这诱导高应力并导致裂缝。为了设计可以最小化裂缝的硅纳米结构,重要的是在锂化期间理解和表征硅纳米结构中的应激状态。使用原位同步调节X射线微量微量方法测定电化学锂锂期间SINWS的结晶芯的应力(在电化学锂化的不同水平)。一旦锂化开始,我们发现SINW的晶体核心变得高度压缩(最多 - ?325.5MPa)。该发现有助于在电化学锂化期间有关SINWS中的机械应力状态的解开洞察力,这可能潜在地铺平在下一代锂离子电池中的硅纳米结构阳极材料的无裂缝设计的路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号