首页> 外文会议>Conference on Single Molecule Spectroscopy and Superresolution Imaging >Nano-resolution in vivo 3D orbital tracking system to study cellular dynamics and bio-molecular processes
【24h】

Nano-resolution in vivo 3D orbital tracking system to study cellular dynamics and bio-molecular processes

机译:体内3D轨道跟踪系统中的纳米分辨率研究蜂窝动力学和生物分子过程

获取原文

摘要

We present a microscopy technique, orbital particle tracking, in which the scanner scans orbits around species,unlike a raster imaging technique in which the scanner scans an area one line at a time. By analyzing thefluorescence emission intensity variation along an orbit, the location of a species in the orbit can be determined withprecision of a tenth of a nanometer in a millisecond time scale, and the orbit can be moved to the new location of thespecies through a feedback loop if any movement is detected. This technique can be extended to two scanningorbits, one above and one below the sample plane to track the sample in 3D space. It can be used in vitro or in vivoto track a motion of a sample or to understand the dynamics of the sample. Additional detectors can help reveal thecorrelation between events with different emission spectrums. We have performed two different experiments withthe system to show the capability of the technique. In the first example, we track a transcription site to understandthe relationship between transcription factor - DNA binding and RNA transcription . By labeling atranscription factor with Halo-JF646 and nascent RNA with PP7-GFP, we were able to cross correlate fluorescenceintensity to discover temporal coordination between transcription factor DNA binding and resulting gene activation.In the second experiment, we tracked lysosomes in live cells to understand the nature of the transport whether it isan active transport or a free diffusion. Trajectories of a total of 24 lysosomes are recorded during the experiment.The mean squared displacement (MSD) curves of the trajectories showed some clear differences between thebehaviors of the lysosomes which were attributed to the active transport along microtubules as opposed to freelydiffusing lysosomes.
机译:我们提出了一种显微镜技术,轨道粒子跟踪,其中扫描仪扫描物种周围的轨道,与扫描仪一次扫描一个区域的光栅成像技术不同。通过分析沿轨道的荧光发射强度变化,可以确定轨道中的物种的位置在毫秒的时间尺度中精确纳米纳米,轨道可以移动到新位置如果检测到任何移动,则通过反馈循环种类。该技术可以扩展到两次扫描轨道,一个上方和一个下方的样品平面,以跟踪3D空间中的样品。它可以在体外或体内使用跟踪样本的运动或理解样品的动态。额外的探测器可以帮助揭示不同发射光谱的事件之间的相关性。我们已经进行了两个不同的实验系统显示该技术的能力。在第一个示例中,我们跟踪转录站点以了解转录因子 - DNA结合与RNA转录的关系。通过标记A.具有Halo-JF646的转录因子和具有PP7-GFP的新生RNA,我们能够互相关荧光发现转录因子DNA结合与导致基因活化之间的时间协调的强度。在第二个实验中,我们在活细胞中跟踪了溶酶体以了解运输的性质积极的运输或自由扩散。在实验期间记录了总共24个溶酶体的轨迹。轨迹的平均平均位移(MSD)曲线显示出一些明显的差异溶酶体的行为归因于沿着微管的主动运输,而不是自由扩散溶酶体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号