【24h】

Self-Driven Soft-Body Creatures

机译:自驾动软体生物

获取原文

摘要

Virtual characters play an important role in computer generated environments, such as, video games, training simulations, and animated films. Traditional character animation control methods evolve around key-frame systems and rigid skeletons. In this paper, we investigate the creation and control of soft-body creatures. We develop creatures that learn their own motor controls and mimic animal behaviours to produce autonomous and coordinated actions. Building upon passive physics-based methods and data-driven approaches, we identify solutions for controlling selective mesh components in a coherent manner to achieve self-driven animations that possess plausible life-like characteristics. Active soft-body animations open the door to a whole new area of research and possibilities, such as, morphable topologies, with the ability to adapt and overcome a variety of problems and situations to accomplish specified goals. We focus on two and three-dimensional deformable creatures that use physics-based principles to achieve unconstrained self-driven motion as in the real-world. As we discuss, control principles from passive soft-body systems, such as, clothes and finite element methods, form the foundation for more esoteric solutions. This includes, controlling shape changes and locomotion, as movement is generated by internally changing forces causing deformations and motion. We also address computational limitations, since theoretical solutions using heuristic models that train learning algorithms can have issues generating plausible motions, not to mention long search times for even the simplest models due to the massively complex search spaces.
机译:虚拟字符在计算机生成的环境中发挥着重要作用,例如视频游戏,培训模拟和动画电影。传统的字符动画控制方法围绕键框系统和刚性骨架演变。在本文中,我们调查了软体生物的创造和控制。我们开发了学习自己的电机控制和模仿动物行为的生物,以产生自主和协调的行为。基于被动物理的方法和数据驱动方法构建,我们识别以相干方式控制选择性网格组件的解决方案,以实现具有合理的寿命特征的自动动画。主动软体动画将门打开整个新的研究和可能性,如可变拓扑,具有适应和克服各种问题和情况的能力,以实现指定的目标。我们专注于两个和三维可变形生物,使用基于物理学的原则来实现无关的自我驱动运动,如现实世界中。正如我们讨论的,从无源软体系统的控制原则,例如衣服和有限元方法,为更深奥的解决方案形成基础。这包括控制形状变化和运动,因为通过内部变化的力产生导致变形和运动的移动。我们还解决了计算限制,因为使用火车学习算法的启发式模型的理论解决方案可能具有产生合理的动作的问题,而不是由于大型搜索空间引起的最简单模型即使是最简单的模型也是如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号