首页> 外文会议>Conference of the Italian Thermal Machines Engineering Association >A Control-Oriented and Physics-Based Model of the Engine Crank Mechanism Friction for the Base Calibration: Parametric Analysis
【24h】

A Control-Oriented and Physics-Based Model of the Engine Crank Mechanism Friction for the Base Calibration: Parametric Analysis

机译:基于控制的和物理基础的发动机曲柄机构摩擦基础校准:参数分析

获取原文

摘要

Over the last decades, internal combustion engines have undergone a continuous evolution to achieve better performance, lower pollutant emissions and reduced fuel consumption. This evolution involved changes in the engine architecture needed to perform advanced management strategies. Therefore, Variable Valve Actuation, Exhaust Gas Recirculation, Gasoline Direct Injection, turbocharging and powertrain hybridization have widely equipped modern internal combustion engines. However, the effective management of a such complex system is due to the contemporaneous development of the on-board Engine Electronic Control Unit (ECU). In fact, the additional degrees of freedom available for the engine regulation highly increased the complexity of engine. In the design phase of the engine architecture and in the subsequent base calibration process, it is of fundamental importance to analyse the energy flows of the individual mechanical components, or to predict the friction in the eventuality of possible component modifications. The use of the 1D models allows the thermo-fluid dynamics simulation of the adopted solutions and the evaluation of the corresponding energy effects. Currently, the Friction Mean Effective Pressure (FMEP) analysis is entrusted to empirical relationships whose use is bound to the need to calibrate the relationship itself by means of experimental data of the engine. These models do not allow to predict the effect of any architectural changes in terms of FMEP. In order to overcome this criticality, the authors propose the possibility of using specific numerical Physics-Based models based on a multi body approach. A parametric approach to analyse the sensitivity of the model has been conducted. From these analyses, it is possible to take advantage of the parameters identified for its calibration. To determine the quality of the model used in reproducing physical phenomena, 14 experimental FMEP measurements were used: from the first results obtained, we note
机译:在过去十年中,内燃机经历了连续的演化,以实现更好的性能,降低污染物排放和降低的燃料消耗。此演变涉及执行高级管理策略所需的发动机架构的变化。因此,可变阀致动,废气再循环,汽油直喷,涡轮增压和动力总成杂交具有广泛配备的现代内燃机。然而,这种复杂系统的有效管理是由于车载发动机电子控制单元(ECU)的同时开发。事实上,发动机调节的额外自由度高度增加了发动机的复杂性。在发动机架构的设计阶段和随后的基本校准过程中,分析各个机械部件的能量流动的重要性,或者预测可能的组件修改的最终性的摩擦。使用1D模型允许采用的解决方案的热流体动力学模拟和对应的能量效应的评估。目前,摩擦平均有效压力(FMEP)分析被委托给经验关系,其使用必然需要通过发动机的实验数据校准关系本身。这些模型不允许预测任何架构变革对FMEP的影响。为了克服这种关键性,作者提出了基于多体方法使用基于特定的数值物理学模型的可能性。已经进行了分析模型灵敏度的参数方法。从这些分析中,可以利用所识别的参数。为了确定再现物理现象的模型的质量,使用了14次实验性FMEP测量:从第一个获得的结果,我们注意到

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号