首页> 外文会议>Biennial ISEM Conference on Ecological Modelling for Global Change and Coupled Human and Natural System >Numerical modeling on toxin produced by predominant species of cyanobacteria within the ecosystem of Lake Kasumigaura, Japan
【24h】

Numerical modeling on toxin produced by predominant species of cyanobacteria within the ecosystem of Lake Kasumigaura, Japan

机译:日本Kasumigaura湖生态系统中染色体中毒素产生的毒素的数值模拟

获取原文

摘要

The paper investigates the predominant algal (Microcystis aeruginosa, Microcystis viridis, Microcystis ichthyoblabe, and Mirocystis wasenbergii) bloom, their transition behaviors and toxin produced as Microcystin-Leucine+Arginine (MC-LR), Microcystin-Arginine+Arginine (MC-RR) and Microcystin-Tyosine+Arginine (MC-YR) by cyanobacteria within the ecosystem of Lake Kasumigaura, Japan by using hydrodynamic ecosystem coupled model. Integrating the famous Monod functions'" concept the second mode of toxin production and Grover et al. 2011 river reservoirs toxin modeling theoretical notion assumes that the rate of toxin production by cyanobacteria depends on proportional to blue green algal composition and their abundance. Conceptualizing these two novel idea we have developed a three dimensional numerical model and to elucidate the structure of algal species and prediction of toxin production within the lake ecosystem. The simulation results compare the toxin (MC-LR, MC-RR and MC-YR) production of some stations in the Lake Kasumigaura with the observational data in the month of July, August and September for 2005, 2006 and 2007.The simulation result shows that there are some dominant species (Microcystis aeruginosa and Mycrocystis viridis are highly toxic) with regard to toxin produce in July, August and September in 2005. But in 2006 and 2007 there is no toxin produced by cyanobacteria (dominant species by Microcystis ichthyoblabe is toxic/nontoxic) in the ecosystem of Lake Kasumigaura. Because of timing and duration of the cyanobacteria bloom, making scum or colony and dying depends on the selecting parameters i.e. light intensity, temperature, water depth, wind direction, buoyancy and N: P ratio etc. But in some cases, toxin production depends on the Microcystis species toxic and non-toxic characteristics. The numerical modeling was calibrated by tuning toxin decay coefficient and other parameters for achieving a good agreement between the observations and the predictions.
机译:本文研究了主要的藻类(微阴压铜绿假单胞菌,微阴茎毒蕈毒蕈,微阴压,Microcystis Wasenbergii)绽放,它们的过渡行为和毒素作为微囊藻苷+精氨酸(MC-LR),微阴茎 - 精氨酸+精氨酸(MC-RR)产生通过使用流体动力学生态系统耦合模型,通过Cyanobacteria在日本Kasumigaura湖生态系统内的Cyanobacteria和微囊糖蛋白+精氨酸(MC-YR)。集成着名的Monod函数“概念毒素生产和GROVER等人的第二种模式。2011河储层毒素建模理论概念假设蓝色细菌的毒素生产率取决于蓝绿藻类组合物成比例。概念化这两个我们开发了三维数值模型的新颖思想,阐明了藻类种类的结构和湖泊生态系统内的毒素生产预测。仿真结果比较了一些毒素(MC-LR,MC-RR和MC-YR)的生产Kasumigaura Lake Kasumigaura的电台,在2005年7月,8月和9月的观测数据,2005年,2006年和2007年。仿真结果表明,毒素生产有一些主要物种(微囊体铜绿假单胞菌和Mycrocystis viridis高度毒性) 2005年7月,8月和9月。但在2006年和2007年,Cyanobacteria没有毒素(Microc Ystisichthyoblabe在Kasumigaura湖生态系统中有毒/无毒)。由于叶绿素的时序和持续时间,使浮渣或菌落和菌落和染色取决于选择参数,即光强度,温度,水深,风向,浮力和N:P比等。但在某些情况下,毒素的生产取决于微囊杆菌物种有毒和无毒的特性。通过调整毒素衰减系数和其他参数来校准数值建模,以实现观察与预测之间的良好一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号