首页> 外文会议>International Design Engineering Technical Conferences >OPTIMIZATION OF SHUNTED PIEZOELECTRIC PATCHES FOR VIBRATION REDUCTION OF COMPLEX STRUCTURES - APPLICATION TO A TURBOJET FAN BLADE
【24h】

OPTIMIZATION OF SHUNTED PIEZOELECTRIC PATCHES FOR VIBRATION REDUCTION OF COMPLEX STRUCTURES - APPLICATION TO A TURBOJET FAN BLADE

机译:复分工压电贴片优化复杂结构的振动减速 - 涡轮喷射扇形

获取原文

摘要

Vibration reduction of a turbojet fan blade with piezoelectric patches connected to a passive electrical circuit, commonly called "shunt", is addressed in this study. The purpose of this work is to present a method for maximizing the performance of a piezoelectric resonant shunt. The cases of resistive shunt [1] and switch techniques [2] are not covered here but the method remains valid. To improve the damping level, a key issue is the optimization of the whole system, in terms of location and size of the piezoelectric patches and electric circuit components choice. It was shown in [3] these two optimizations, mechanical and electrical, can be realized separately. Moreover, it is proved in [1,4-6] that the only parameters to maximize are the modal electromechanical coupling factors (MEMCF), which characterize the energy exchanges between the mechanical structure and the piezoelectric patches for a given mode. Since the optimal value of the electric circuit parameters are known as functions of the MEMCF and the system structural characteristics [3,7], they can be evaluated in a second step. Thus, the mechanical optimization consists in maximizing the MEMCF by optimizing the patches positions and dimensions, i.e. finding the best design. To fulfill this requirement and in order to manage a complex geometry, a 3D finite element (FE) formulation of the coupled electromechanical problem is derived [8]. A reduced order model of the discretized problem is then obtained by expanding the mechanical displacement unknowns vector onto the short-circuit eigenmodes to get the MEMCF.
机译:在该研究中解决了与被动电路连接到无源电路的压电贴片的涡轮喷射风扇叶片的减振。该工作的目的是提出一种最大化压电共振分流器的性能的方法。电阻分流器[1]和开关技术[2]介绍,但该方法保持有效。为了提高阻尼级别,在压电贴片和电路元件的位置和尺寸方面,关键问题是整个系统的优化。它在[3]中显示了这两种优化,机械和电气,可以单独实现。此外,证明了最大化的唯一参数是模态机电耦合因子(MEMCF),其表征机械结构与给定模式的压电贴片之间的能量交换。由于电路参数的最佳值称为MEMCF和系统结构特性的功能[3,7],因此可以在第二步中进行评估。因此,机械优化通过优化贴片位置和尺寸来最大化MEMCF,即找到最佳设计。为了满足这一要求并且为了管理复杂的几何形状,派生机电问题的3D有限元(FE)配方是衍生的[8]。然后通过将机械位移未知向量扩展到短路特征范围以获得MEMCF来获得通过使机械位移未知的载体的减少的离散问题的阶数模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号