首页> 外文会议>European Conference on Precision Agriculture >Modelling competition for below-ground resources and light within a winter pea (Pisum sativum L.) - wheat (Trit/cum oestivum L.) intercrop (Azodyn-1 nterCrop): towards a decision making oriented-tool
【24h】

Modelling competition for below-ground resources and light within a winter pea (Pisum sativum L.) - wheat (Trit/cum oestivum L.) intercrop (Azodyn-1 nterCrop): towards a decision making oriented-tool

机译:冬季豌豆(Pisum Sativum L.) - 小麦(Trit / Cum oestivum L.)Intercrop(Azodyn-1 ntercrop)的建模竞争和光线建模竞争:朝向决策制作

获取原文

摘要

Grain legume-cereal intercrops allow a gain of productivity grown along the growth cycle on the same piece of land under low input (of which nitrogen (N) fertilizers) levels. This is partly due to a better use of soil nitrogen (larger available soil Nper plant for cereal N uptake and an increased contribution of N fixation for pea nutrition) under combinations (species and crop management systems) fully optimized within a given soil and climate environment. Modeling is a powerful tool to explore a wide range of combinations. It can be further used as a decision making oriented-tool provided below-ground resources and light sharing is satisfactorily simulated. Our work aimed at designing a new dynamic intercrop growth model (Azodyn Inter-Crop (1C))based upon Azodyn for wheat and Afisol for pea. Nitrogen and water partitioning between species is firstly driven by nitrogen and water demand of each species. When intercrop demand is larger than soil supply then water and N acquisition is limited by root exploration, soil nutrient supply and N taken up by the companion species as it concurrently depletes available below-ground resources. The 'functional' root layer concept allows to account for advantage towards species with a faster root penetrationrate. Leaf area expansion is driven by daily satisfaction of N demand, itself computed through an adapted version of N dilution curve to intercrop growth. Light sharing depends on leaf area index (LAI) growth and leaf properties (reflectance, leaf angle)of each species. Model outputs show Azodyn-IC can satisfactorily simulate N taken up, LAI, light interception efficiency and crop growth of each sole- and intercropped species along the growth cycle leading to realistic yields for the applied N fertilizer rates. It also emphasizes competition for light and below-ground resources within intercrops is tightly and dynamically linked within intercrop.
机译:谷物豆类谷物互联网允许在低输入(其中氮气(N)肥料)水平下的同一块土地上的生长循环中生长的生产率增加。这部分是由于在特定的土壤和气候环境中完全优化的组合(种类和作物管理系统)的土壤氮气更好地使用土壤氮(谷物N型吸收和豌豆营养的贡献,以及豌豆营养的贡献增加) 。建模是一种强大的工具,可以探索各种组合。它可以进一步用作提供以下地下资源的决策工具,并且令人满意地模拟光分享。我们的工作旨在设计一种基于Azodyn的新型动态性交生长模型(Azodyn Inter-Chource(1C)),用于豌豆的小麦和余地。物种之间的氮和水分配首先是通过每个物种的氮和水需求驱动。当交节度需求大于土壤供应时,水和N采集受到根勘探,土壤养分供应量的限制,伴侣物种均应占据地下地下资源的销售。 “功能”根层概念允许朝着具有更快的根佩内特术的物种来解释。叶面积扩张是通过N个需求的日常满足而导致的,本身通过适应的N稀释曲线的适应版本来计算到性能增长。光分享取决于每个物种的叶面积指数(LAI)生长和叶状性(反射率,叶角)。模型输出显示Azodyn-IC可以令人满意地模拟沿着生长周期的每个唯一和间间物种的含量,赖,光截取效率和作物生长,导致应用的N肥率的现实收益率。它还强调了对白细胞内的光线和地下资源的竞争紧密和动态相关。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号