首页> 外文会议>International Nanotechnology Symposium >Atomistic, mesoscale and finite element simulation of nanotube dispersion in polymers
【24h】

Atomistic, mesoscale and finite element simulation of nanotube dispersion in polymers

机译:聚合物中纳米管道分散的原子构,Messcale和有限元模拟

获取原文

摘要

Controlling the dispersion of carbon nanotubes (CNTs) in solvent is a particular problem in development of advanced CNT-based materials. Using simulation we would like to be able to predict if it is possible to process CNTs in a specific environment, or whether significant enhancement of physical properties is possible with the addition of very small quantities of CNTs. In this presentation we examine the specific case of how we might optimize electrical conductivity of thin film CNT-polymer composites and guide experimental efforts in this area. This is approached by way of the bottom up multiscale modelling scheme described below. We have initially approached the problem of dispersion of CNTs from the perspective of Flory-Huggins theory, by evaluating cohesive energy densities of CNT and polymer materials. This provides realistic input parameters for Dissipative Particle Dynamics (DPD) simulations, which were used to investigate, how the underlying polymer morphology affects the distribution of CNTs within the polymer [1,2]. Adopting such mesoscale approaches is required in order to access the time and length scales over which CNT composites evolve. Finally, the density fields were projected onto a finite-element grid in order to apply the MesoProp [3] software for evaluating the enhancement of electric conductance. We find that the electric conductance depends on the percolation of nanotubes across the polymer layer, through a dynamic process in which connections form and break, leading to a threshold for conductance of about 1/2 vol(percent) CNT. When CNTs are immersed into diblock copolymer systems there is a non-trivial dependence of percolation on the underlying block copolymer morphology. The polymer morphology in this case provides templates for altering the preferred arrangements of CNTs and we show that in most cases this is a frustration to percolation by comparing and contrasting with CNT dispersion in small-molecule fluids and mixtures. Application of shear to manipulate and align the polymer phases results in significant enhancement (c.a. 10 fold increase) of the composite conductivity in the direction of shear.
机译:控制碳纳米管(CNT)的在溶剂中的分散体是在先进的基于CNT的材料开发的特殊问题。使用模拟,我们希望能够预测是否有可能方法中CNT在特定的环境下,还是物理性能显著增强,可以通过添加极少量的碳纳米管的。在这个报告我们研究的我们如何优化薄膜碳纳米管的聚合物复合材料的导电性和指导在这方面的实验工作的具体情况。这是由下往上下面描述的多尺度建模方案的方式接近。我们最初接触的弗洛里 - 哈金斯理论的角度看碳纳米管的分散问题,通过评估CNT和高分子材料的内聚能密度。这提供了用于耗散粒子动力学(DPD)的模拟,将其用于研究,底层聚合物的形态如何影响CNT的聚合物[1,2]内的分布现实输入参数。采用这种办法中尺度需要为了访问的时间和长度尺度在其上的CNT复合材料发展。最后,将密度字段为了应用MesoProp [3]软件用于评估电导的提高被投影到有限元网格。我们发现,电导取决于通过聚合物层的纳米管的渗透,通过动态过程,其中连接形成和断裂,导致对约1/2体积(%)的CNT的电导的阈值。当CNT被浸入到二嵌段共聚物系统有渗滤对底层嵌段共聚物形态的非平凡的依赖性。在这种情况下,聚合物的形态提供了模板,用于改变CNT的优选安排和我们表明,在大多数情况下,这是通过比较和小分子的流体的混合物和与CNT分散对比一个挫折渗滤。的剪切的应用操作和对齐显著增强聚合物相的结果在剪切方向上的复合材料的导电性(C.A. 10倍的增加)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号