首页> 外文会议>Latin American School of Physics >Generalized Bose-Einstein condensation in superconductivity and superfluidity
【24h】

Generalized Bose-Einstein condensation in superconductivity and superfluidity

机译:超导和超浊度的广义Bose-Einstein凝结

获取原文

摘要

Unification of the Bardeen, Cooper and Schrieffer (BCS) and the Bose-Einstein condensation (BEC) theories is surveyed in terms of a generalized BEC (GBEC) finite-temperature statistical formalism. A vital distinction is that Cooper pairs (CPs) are true bosons that may suffer a BEC since they obey BE statistics, in contrast with BCS pairs that are “hard-core bosons” at best. A second crucial ingredient is the explicit presence of hole-pairs (2h) alongside the usual electron-pairs (2e). A third critical element (particularly in 2D where ordinary BEC does not occur) is the linear dispersion relation of CPs in leading order in the center-of-mass momentum (CMM) power-series expansion of the CP energy. The GBEC theory reduces in limiting cases to all five continuum (as opposed to “spin”) statistical theories of superconductivity, from BCS on one extreme to the BEC theory on the other, as well as to the BCS-Bose “crossover” picture and the 1989 Friedberg-Lee BEC theory. It accounts for 2e- and 2h-CPs in arbitrary proportions while BCS theory can be deduced from the GBEC theory but allows only equal (50%-50%) BE condensed-mixtures of both kinds of CPs. As it yields the precise BCS gap equation for all temperatures as well as the precise BCS zero-temperature condensation energy for all couplings, it suggests that the BCS condensate is a BE condensate of a ternary mixture of kinematically independent unpaired electrons coexisting with equally proportioned weakly-bound zero-CMM 2e- and 2h-CPs. Without abandoning the electron-phonon mechanism in moderately weak coupling, and fortuituously insensitive to the BF interactions, the GBEC theory suffices to reproduce the unusually high values of Tc (in units of the Fermi temperature TF) of 0.01–0.05 empirically found in the so-called “exotic” superconductors of the Uemura plot, including cuprates, in contrast to the low values of Tc/TF10?3 roughly reproduced by BCS theory for conventional (mostly elemental) superconductors.
机译:统一牛章,库珀和Schrieffer(BCS)和Bose-Einstein凝结(BEC)理论是在广义(GBEC)有限温度统计形式主义方面的调查。一个重要的区别是Cooper对(CPS)是真正的玻色子,因为他们服从统计数据,与BCS对形成为“硬核心玻色子”相反。第二个关键成分是孔对(2H)的明确存在,以及通常的电子对(2E)。第三个关键元件(特别是在没有发生普通BEC的2D中)是CP在CP能量的质量中心动量(CMM)电力系列扩展中的前导顺序的线性分散关系。 GBEC理论在限制案件中减少了所有五个连续体(而不是“旋转”)超导的统计理论,从BCS对BEC理论的一个极端,以及BCS-Bose“Crossover”图片和1989年弗里德伯格李理论。它在任意比例中占2E和2H-CP,而BCS理论可以从GBEC理论推导,但只能允许等于(50%-50%)的两种CPS的混合混合物。由于它产生所有温度的精确BCS间隙方程以及所有偶联的精确BCS零温度冷凝能,所以它表明BCS冷凝物是温室内独立的未配对电子的三元混合物的冷凝物,其共存等于弱 - 零CMM 2E和2H-CPS。在不放弃在中等弱耦合的电子 - 声子机制,令人浓度对BF相互作用的繁重不敏感的情况下,GBEC理论就足以再现了0.01-0.05凭经验的0.01-0.05的TC(以费米温度为单位)的异常高值。 - 与大铜蛋白质的uemura图的“异种”超导体,与常规(主要是元素的)超导体大致转换的TC /TF10≤3的低值相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号