首页> 外文会议>International Conference on Fracture >Near tip stress intensity factor of an edge surface crack in PZT thin films with 90° domain switching
【24h】

Near tip stress intensity factor of an edge surface crack in PZT thin films with 90° domain switching

机译:PZT薄膜边缘表面裂纹的近端应力强度因子,90°域切换

获取原文

摘要

Ferroelectric thin films, such as lead zirconate titanate Pb(Zr_xTi_(1-x))O_3 (PZT) thin films, have been extensively applied over the last decades to high-value capacitors, infrared detectors, sensors, actuators, optical switches, ferroelectric field-effect transistors and non-volatile memories [1,2]. The ferroelectric thin films operating in many structural components, especially aerospace components, are ineluctably subjected to severe thermal loading which may be produced by aerodynamic heating, laser irradiation or localized intense fire [3]. Thermopiezoelectric response of PZT thin films was studied using the piezoelectric potential function method [4]. However, it is natural that ferroelectric thin films may fail due to thermal, mechanical, and electric loading. Fracture mechanics analyses of bulk ferroelectric materials under coupled mechanical and electrical loadings were studied extensively in the past several years [5,6]. Because of the particular electromechanical coupling effect, the fracture mechanism received high attention for bulk ferroelectric materials with defects such as cracks, impurities and holes [7,8]. When a ferroelectric material with cracks is subjected to external loadings, domain switching may occur [9]. Under the coupling of mechanical and electric loadings, domain switching could toughen poled ferroelectric ceramics with an impermeable crack [10]. The domain switching zone around the crack-tip causes the nonlinear stress-strain behavior and shields the crack-tip from the external loadings [9,11]. For bulk ferroelectric materials the shielding stress intensity factor (SIF) due to domain switching was usually evaluated based on the weight function method [7]. However, for a film/substrate system the SIF was obtained by the weight function method for one-dimensional edge cracks in a semi-infinite body [12]. Because of their inherent complexity, relatively few solutions for the failure mechanism of ferroelectric thin films under an external loading are available in the literature.
机译:铁电薄膜,例如铅锆钛合金Pb(Zr_xti_(1-x))O_3(PZT)薄膜,在过去几十年中被广泛应用于高价值电容器,红外探测器,传感器,执行器,光开关,铁电场效应晶体管和非易失性存储器[1,2]。在许多结构部件,尤其是航空航天组分中操作的铁电薄膜是不受推的耐热负载,其可以通过空气动力学加热,激光照射或局部强烈火灾产生的严重热负荷[3]。使用压电电位功能法研究了PZT薄膜的热电辐射响应[4]。然而,由于热,机械和电荷,铁电薄膜可能失效是自然的。在过去几年中,在耦合机电负荷下的散装铁电材料分析了块状铁电材料的分析[5,6]。由于特定的机电耦合效果,裂缝机构对散装铁电材料具有高度关注,诸如裂缝,杂质和孔的缺陷[7,8]。当具有外部载荷的裂缝的铁电材料时,可能发生域切换[9]。在机械和电动载荷的耦合下,域切换可以通过不透水裂缝[10]来强化极化的铁电陶瓷。裂缝尖端周围的畴切换区域导致非线性应力 - 应变行为,并从外部载荷屏蔽裂缝尖端[9,11]。对于散装铁电材料,通常基于域切换引起的屏蔽应力强度因子(SIF)基于重量函数方法[7]。然而,对于薄膜/基板系统,SIF通过在半无限体中的一维边缘裂纹的重量函数方法获得SIF [12]。由于其固有的复杂性,在外部负荷下的铁电薄膜的失效机理的溶解度相对较少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号