首页> 外文会议>Workshop on Geothermal Reservoir Engineering >Outcrop Analogue vs. Reservoir Data: Characteristics and Controlling Factors of Physical Properties of the Upper Jurassic Geothermal Carbonate Reservoirs of the Molasse Basin, Germany
【24h】

Outcrop Analogue vs. Reservoir Data: Characteristics and Controlling Factors of Physical Properties of the Upper Jurassic Geothermal Carbonate Reservoirs of the Molasse Basin, Germany

机译:露头模拟与储层数据:德国泥土盆地侏罗纪地热碳酸盐储层物理性质的特征及控制因素

获取原文

摘要

In the early stages of reservoir exploration, the characterization of the reservoir is mainly accomplished by evaluating drilling data and seismic surveys. Especially in carbonate reservoirs the distinction of different facies zones is very challenging. For reservoir predictions density, porosity, permeability, thermal conductivity/diffusivity, and specific heat capacity have to be quantified as precisely as possible. Outcrop analogue studies enable the determination and correlation of facies related thermo-physical and petrophysical parameters. As these parameters show facies related trends, applying a thermofacies classification on the carbonate formations is helpful to understand the heterogeneities and to identify production zones. In combination with drilling data from a 1,600 m deep research drilling and a 4,850 m (total vertical depth, measured depth: 6,020 m) deep geothermal well (bottom hole temperature of around 170°C) the reservoir property prediction can be validated and consequently the exploration becomes more precise. The outcrops of the Swabian and Franconian Alb represent the target formations of Upper Jurassic carbonate reservoirs in the adjacent Molasse Basin. The hydraulic conductivity of these carbonate formations is mainly controlled by tectonic elements and karstification. The type and grade of karstification is also facies related. The rock permeability has only a minor effect on the reservoir's sustainability except for some grain- and dolostones with higher porosities and permeabilities. The overall rock permeability ranges from 10~(-18) m~2 to 10~(-14) m~2 (0.001 - 10 mD). A high variation of thermo-physical parameters is recognized within facies zones. Mud- and wackestones show typical thermal conductivities of around 2 Wm~(-1)K~(-1). Mudstones have lower thermal conductivities than wackestones due to their clay content. The permeability range of mud and wackestones is about the same. Reef structures show the highest values of thermal conductivity (up to 4.8 Wm~(-1)K~(-1)), due to secondary silicified sponge layers and dolomitization processes. Also in the dolomitized areas higher permeabilities can be observed. Most parameters are determined on oven dried samples. These values have to be corrected via transfer models for water saturated and according reservoir temperature and pressure conditions. To validate these calculated parameters a Thermo-Triaxial-Cell simulating the temperature and pressure conditions of the reservoir is used. Under reservoir conditions a decrease of 2-3 magnitudes in permeability is observed due to the thermal expansion of the rock matrix. From laboratory tests and analyzed drilling data can be concluded that in tight carbonates the matrix permeability is temperature controlled. The thermo-physical matrix parameters are density controlled. Density increases typically with depth and especially with dolomite content, therefore thermal conductivity increases but also decreases with increasing temperature, which is the dominant factor. Specific heat capacity increases with depth and temperature in a range from 790 to 1230 Jkg~(-1)K~(-1). In general the facies related characterization and prediction of reservoir properties proves to be a powerful tool for the exploration and operation of geothermal reservoirs.
机译:在储层勘探的早期阶段,水库的表征主要通过评估钻井数据和地震调查来实现。特别是在碳酸盐储层中,不同面积区的区别非常具有挑战性。对于储存器预测密度,孔隙率,渗透率,导热性/扩散性和特定的热容量必须尽可能地量化。露头类似物研究能够确定与相表相关热物理和岩石物理参数的确定和相关性。由于这些参数显示相表相关趋势,在碳酸盐地层上施加热处理分类是有助于了解异质性和识别生产区。结合从1,600米深的研究钻井和4,850米(总垂直深度,测量深度:6020米)深层地热井(底部孔温度约为170°C)的钻井数据可以验证储层性能预测,从而验证探索变得更加准确。斯瓦比亚和弗朗西尼亚ALB的露头代表了相邻的蜕皮盆地中侏罗克碳酸盐储层的目标形成。这些碳酸盐形成的液压导电性主要由构造元素和岩溶。岩溶的类型和等级也是相关的。除了一些具有较高孔隙和渗透率的谷物和天花板之外,岩石渗透性仅对水库的可持续发展产生了轻微影响。整体岩石渗透率范围为10〜(-18)m〜2至10〜(-14)m〜2(0.001-10md)。在相形区域内识别出热物理参数的高变化。泥浆和瓦克隆显示典型的导热性约为2Wm〜(-1)k〜(-1)。由于粘土含量,泥岩具有比瓦克隆的热导流较低。泥浆和瓦片的渗透范围大致相同。 Reef结构显示出导热率的最高值(高达4.8Wm〜(-1)k〜(-1)),由于二次硅化的海绵层和二孔化方法。同样在白云化区域中,可以观察到更高的渗透率。大多数参数在烘箱干燥样品上确定。必须通过用于水饱和的传输模型和根据储层温度和压力条件来校正这些值。为了验证这些计算的参数,使用模拟储存器的温度和压力条件的热三轴电池。在储层条件下,由于岩石基质的热膨胀,观察到渗透率的2-3个幅度的降低。从实验室测试和分析的钻井数据可以得出结论,在紧密碳酸盐中,基质渗透率是温度控制。热物理矩阵参数是密度控制的。密度通常随深度且特别是白云石含量增加,因此导热率增加,但随着温度的增加,温度越来越低,这是显性因素。具体的热容量随着深度和温度而增加,范围为790至1230 jkg〜(-1)k〜(-1)。一般来说,水库属性的相关表征和预测证明是地热储层的探索和运行的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号