首页> 外文会议>Workshop on Geothermal Reservoir Engineering >Imaging Steeply-Dipping Fault Zones Using Elastic Reverse-Time Migration with a Combined Wavefield-Separation and Poynting-Vector Imaging Condition
【24h】

Imaging Steeply-Dipping Fault Zones Using Elastic Reverse-Time Migration with a Combined Wavefield-Separation and Poynting-Vector Imaging Condition

机译:使用弹性反向时间迁移成像陡峭浸渍断层区域,具有组合的波场分离和Poynting-Vector成像条件

获取原文

摘要

Elastic reverse-time migration needs to properly handle the shear-wave polarization during imaging using compressional-to-shear or shear-to-compressional converted waves. Polarity distribution analysis of Poynting vectors is a computationally efficient method for polarization corrections. A limitation of the Poynting vector imaging condition is that it assumes only one dominant direction of wave propagation at each spatial point for any given time and thus is not very accurate in complex regions with complicated wavefields. We develop a computationally efficient imaging condition for elastic reverse-time migration to directly image steeply-dipping fault zones. We first separate the forward-propagating source wavefield and the backward-propagating receiver wavefield into left- and right-going, or down-going and up-going waves, and then apply the Poynting-vector imaging condition to the separated wavefields. After wavefield separation, the inaccuracy of the Poynting-vector imaging condition in complex regions is alleviated. We build a geophysical model using geologic features found at the Soda Lake geothermal field and generate synthetic multi-component seismic reflection data. The model contains several steeply-dipping fault zones. We validate the improved imaging capability of our new imaging condition for elastic reverse-time migration using the synthetic data. Our numerical results demonstrate that our new elastic reverse-time migration with the combined wavefield-separation and Poynting-vector imaging condition produces high-resolution images of steeply-dipping fault zones, while its computational cost is approximately one order of magnitude lower than that with the space-lag imaging condition for the 2D case.
机译:弹性反向时间迁移需要在使用压缩到剪切或剪切到压缩转换的波的成像期间正确处理剪切波偏振。 Poynting vectors的极性分布分析是偏振校正的计算上有效的方法。对Poynting载体成像条件的限制是它对于任何给定时间的每个空间点仅在每个空间点处仅假设一个主导的波浪传播方向,因此在具有复杂波场的复杂区域中不是非常精确的。我们开发了一种计算上有效的成像条件,以便弹性反向时间迁移直接图像陡峭浸渍断层区域。我们首先将正向传播的源波场和向后传播的接收器波段分开到左右或右转或下降和上行波,然后将Poynting矢量成像条件应用于分离的波场。在波场分离之后,缓解了复杂区域中的Poynting-veactor成像条件的不准确性。我们使用在苏打湖地热田发现的地质特征建立地球物理模型,并产生合成多分量地震反射数据。该模型包含几个陡峭的断层区域。我们使用合成数据验证了我们新的成像条件的提高了成像功能,以使用合成数据迁移弹性反向时间迁移。我们的数值结果表明,我们的新的弹性相反时间迁移与组合的波场分离和Poynting-veach成像条件产生了陡峭浸渍断层区域的高分辨率图像,而其计算成本大约是一个数量级低于此2D案例的空间滞后成像条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号