首页> 外文会议>Workshop on Geothermal Reservoir Engineering >USING BOUNDARY ELEMENT MODELING OF FAULT SLIP TO PREDICT PATTERNS OF STRESS PERTURBATION AND RELATED FRACTURES IN GEOTHERMAL RESERVOIRS AND EXPLORE PARAMETER UNCERTAINTY
【24h】

USING BOUNDARY ELEMENT MODELING OF FAULT SLIP TO PREDICT PATTERNS OF STRESS PERTURBATION AND RELATED FRACTURES IN GEOTHERMAL RESERVOIRS AND EXPLORE PARAMETER UNCERTAINTY

机译:使用断层滑动边界元建模预测地热储层应力扰动及相关骨折的模式,探讨参数不确定性

获取原文

摘要

Geologic structures at the surface such as fault tips, intersections, and fault relays are known to concentrate stress that can promote increased fracture density or reactivation in response to fault slip that facilitate fluid flow. The stress state driving slip determines where along the fault slip occurs that will induce deformation in the adjacent rock volume to promote or inhibit fracture formation or reactivation. Unfortunately, both the geometry and stress state have significant uncertainties that will impact the usefulness of this information in prospecting for geothermal resources, developing a reservoir model, distinguishing between competing models, or quantifying the probability of model validity. The impact of these uncertainties on the reservoir model can be quantitatively evaluated through efficient numerical modeling that iteratively explores the range of uncertainty in the controlling parameter space. The boundary element method is used to model fault slip (or opening) and calculate stress/strain variation. The Rhyolite Ridge fault system located at the Desert Peak Geothermal Field in Nevada is modeled in this study as an example of a blind geothermal field associated with a geometrically complex fault, which is poorly constrained at depth. We explore the impact of that uncertainty to better constrain the fault geometry at depth, evaluate the impact of uncertainty in tectonic stresses predictions of deformation, and thus the predicted pattern of fracture slip and formation. We find that the level of uncertainty in fault geometry leads to a high degree of variability in the locations experiencing stress states that promote fracture. But for instance, only a narrow subset of fault heights and dips approach the observed stress state in well DP27-15. In addition, the most stable stress concentrations occur within relays between unconnected fault segments.
机译:已知诸如故障提示,交叉点和故障继电器的表面的地质结构,以浓缩应力,这可以响应于促进流体流动的故障滑动而促进裂缝密度或再活化的压力。应力状态驱动滑动决定了沿着故障滑动的位置,其将诱导相邻岩石体积中的变形,以促进或抑制骨折形成或再激活。不幸的是,几何和压力状态都具有重大的不确定性,将影响本信息在地热资源的勘探中的有用性,开发储层模型,区分竞争模式,或量化模型有效性的可能性。通过有效的数值模型可以定量地评估这些不确定性对储层模型的影响,从而迭代探讨控制参数空间中的不确定性范围。边界元方法用于模拟故障滑移(或开口)并计算应力/应变变化。位于内华达州沙漠峰地热田的流纹岭故障系统是在本研究中建模的,作为与几何复杂故障相关的盲目地热场的示例,这在深度受到严重限制。我们探讨了这种不确定性在深度上更好地限制故障几何形状的影响,评估不确定性在构造应力的变形预测中的影响,从而进行裂隙滑移和形成的预测模式。我们发现故障几何形状的不确定性水平导致体验促进骨折的应力状态的位置的高度变化。例如,只有一个窄的故障高度和DIPS的子集接近DP27-15的观察到的应力状态。此外,最稳定的应力浓度发生在未连接的故障段之间的继电器内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号