首页> 外文会议>International IEEE EMBS Conference on Neural Engineering >New advances in imaging and their impact on cognitive neurosciences
【24h】

New advances in imaging and their impact on cognitive neurosciences

机译:成像的新进展及其对认知神经科学的影响

获取原文

摘要

In the last decade, ability to measure and image functional, physiological, and metabolic parameters in the human brain using magnetic resonance (MR) methods has evolved significantly. MR based functional maps in the brain can be generated based on deoxyhemoglobin or perfusion alterations originating from secondary metabolic and hemodynamic responses to increased neuronal activity. However, to date, direct imaging of electrical activity by MR is not feasible. Because the MR based functional methods (referred to as fMRI) rely on the secondary and tertiary events induced by the neuronal activity, spatial specificity of the MR functional maps and the ultimate resolution that can be achieved is determined by several parameters: These include: 1) the nature of the coupling between neuronal activity and the secondary metabolic and hemodynamic responses, 2) coupling of fMRI signal changes to these metabolic and hemodynamic responses through the vasculature, and 3) signal-to-noise ratio (SNR) in fMRI images. Because of the magnetic field dependence of SNR and the deoxyhemoglobin-based blood oxygen level dependent (BOLD) contrast (which is the most commonly used fMRI approach), high magnetic fields have been utilized extensively in our laboratory to achieve improvements in specificity (i.e. accuracy) and resolution in functional maps. As a result, recently such studies have been extended for the first time to 7 Tesla in the human brain and 9.4 Tesla in animal brains. In these efforts, understanding the complex field dependence of BOLD mechanism has been imperative. These ultra-high field studies have already provided unique results regarding human cognitive functions that have not been achievable at lower magnetic fields due to limitations in accuracy of the maps.
机译:在过去的十年中,使用磁共振(MR)方法在人脑中测量和图像功能,生理和代谢参数的能力显着发展。大脑中的基于脱氧血红蛋白或源自次要代谢和血液动力学反应的灌注改变可以产生MR基于脱氧血红蛋白或血液动力学反应的灌注改变。然而,迄今为止,MR MR的电气活动直接成像是不可行的。因为基于MR基的功能方法(称为FMRI)依赖于神经元活动引起的二次和三级事件,所以MR功能地图的空间特异性和可以实现的最终分辨率由几个参数确定:这些包括:1 [神经元活动与次要代谢和血液动力学反应的偶联性质的性质,2)FMRI信号通过脉管系统和3)在FMRI图像中的信噪比(SNR)对这些代谢和血液动力学响应的耦合。由于SNR的磁场依赖性和基于脱氧血红蛋白的血氧水平依赖性(粗体)对比(这是最常用的FMRI方法),我们的实验室中广泛使用高磁场以实现特异性的改进(即精度)在功能地图中的分辨率。因此,最近,这些研究已经在人脑中第一次延长至7个特斯拉和动物脑中的9.4特斯拉。在这些努力中,了解大胆机制的复杂场依赖性一直是必不可少的。这些超高场研究已经为人类认知功能提供了独特的结果,这是由于地图的准确性的限制而在较低磁场下尚未实现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号