首页> 外文会议>International Symposium on Structure and Function of Roots >Response of tomato plants to chilling stress in association with nutrient or phosphorus starvation
【24h】

Response of tomato plants to chilling stress in association with nutrient or phosphorus starvation

机译:番茄植物与营养素或磷饥饿结合冷凝压力的反应

获取原文

摘要

The experiments were conducted on two tomato cultivars: Garbo and Robin. Mineral starvation due to plant growth in 20-fold diluted nutrient solution (DNS) combined with chilling reduced the rate of photosynthesis (P_N) and stomatal conductance (g) to a greater extent than in plants grown in full nutrient solution (FNS). In phosphate-starved tomato plants the P_N rate and stomatal conductance decreased more after chilling than in plants grown on FNS. In low-P plants even 2 days after chilling the recovery of CO_2 assimilation rate and stomatal conductance was low. A resupply of phosphorus to low-P plants (low P + P) did not improve the rate of photosynthesis in non-chilled plants (NCh) but prevented P_N inhibition in chilled (Ch) plants. The greatest effect of P resupply was expressed as a better recovery of photosynthesis and stomatal conductance, especially in non-chilled low P + P plants. The F_v/F_m (ratio of variable to maximal chlorophyll fluorescence) decreased more during P starvation thanas an effect of chilling. Supplying phosphorus to low-P plants caused the slight increase in the F_v/F_m ratio. In conclusion, after a short-term chilling in darkness a much more drastic inhibition of photosynthesis was observed in nutrient-starved or P-insufficient tomato plants than in plants from FNS. This inhibition was caused by the decrease in both photochemical efficiency of photosystems and the reduction of stomatal conductance. The presented results support the hypothesis that tomato plants with limited supply of mineral nutrients or phosphorus are more susceptible to chilling.
机译:实验是在两种番茄品种:Garbo和Robin进行的。由于植物生长20倍稀释的营养溶液(DNS)的矿物质饥饿与冷却降低了光合作用(P_N)和气孔电导(G)的速率,而不是在全营养溶液(FNS)中生长的植物中的更大程度。在磷酸盐饥饿的番茄植物中,冷却后,P_N速率和气孔传导比在FNS上生长的植物中的植物更高。在降温后甚至2天的低P植物,恢复CO_2同化率和气孔电导率低。对低p植物(低p + P)的磷(低p + p)没有提高非冷冻植物(NCH)的光合作用速率,而是防止在冷冻(CH)植物中的P_N抑制。 P补给的最大效果被表达为光合作用和气孔电导的更好恢复,特别是在非冷冻的低P + P植物中。在P饥饿过程中,F_V / F_M(变量与最大叶绿素荧光的比率)降低了冷却的效果。向低P植物供应磷导致F_V / F_M比率略有增加。总之,在营养饥饿或P-不足番茄植物中观察到比从植物FNS短期在黑暗中冷却更加大幅度地抑制光合作用的后。这种抑制是由光学系统光化学效率的降低和气孔导度的降低引起的。所呈现的结果支持具有有限供应矿物营养素或磷的番茄植物更容易冷冻的假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号