首页> 外文会议>International conference on applications of photonic technology >Micromachining with femtosecond 250nm laser pulses
【24h】

Micromachining with femtosecond 250nm laser pulses

机译:Micromachining与飞秒250nm激光脉冲

获取原文

摘要

Laser micromachining is a flexible technique for precision patterning of surfaces in microelectronics, micro-electromechanical devices and integrated optical devices. Typical applications include drilling of holes, cutting of conducting lines or shaping of micro component surfaces. The resolution, edge finish and residual damage to the surrounding and underlying structures depend on a variety of parameters including laser energy, intensity, pulse width and wavelength. Femtosecond pulses are of particular interest because the limited time of interaction limits the lateral expansion of the plasma and the inward propagation of the heat front. Thus, very small spot size can be achieved and miniimal heating and damage of underlying layers can be obtained. An additional advantage of femtosecond pulses is that multiphoton absorption leads to efficient coupling of energy to many materials independent of the linear reflectivity of the surface. Thus metals and transmitting dielectrics, which are difficult to micromachine, may be machined with such pulses. The coupling is improved further by employing ultraviolet wavelength laser pulses where the linear absorption typically is much higher than for visible and infrared laser pulses. To explore these advantages, we have initiated a study of the interaction of 250nm femtosecond laser pulses with metals. The laser pulses are obtained by generating the third harmonic from a femtosecond Ti:sapphire laser operating at 750nm. The pulses ar efocused to various intensities in the range of 10~10 W cm~(-2) to 10~(15) W cm~(-2) using reflective and refractive microscope objectives and ablation thresholds and ablation rates have been determined for a few metals. In addition the ability to control feature size and produce submicron holes and lines have been investigated. The results are presented and compared to results obtained using infrared and visible femtosecond laser pulses.
机译:激光微机械是一种灵活的技术,用于精密图案化微电子,微电子机械设备和集成光学装置的表面。典型的应用包括钻孔,切割导电线或微部件表面的成形。周围和底层结构的分辨率,边缘完成和剩余损坏取决于各种参数,包括激光能量,强度,脉冲宽度和波长。飞秒脉冲特别感兴趣,因为有限的相互作用的时间限制了等离子体的横向膨胀和热线的向内传播。因此,可以实现非常小的光斑尺寸,并且可以获得小型加热和底层层的损坏。 FemtoSecond脉冲的额外优点是多光子吸收导致能量的有效耦合到许多与表面的线性反射率无关的材料。因此,难以微机器的金属和透射电介质可以用这种脉冲加工。通过采用紫外波长激光脉冲,进一步提高了耦合,其中线性吸收通常远高于可见光和红外激光脉冲。为了探索这些优势,我们已经开始研究250nm Femtosecond激光脉冲与金属的相互作用。通过从Femtosecond Ti产生第三次谐波来获得激光脉冲:在750nm处运行的蓝宝石激光器。使用反射和折射显微镜目的和消融阈值和消融阈值和消融阈值和消融阈值和消融阈值的各种强度以10〜10W cm〜(-2)至10〜(15)Wcm〜(-2)的脉冲脉冲。一些金属。此外,还研究了控制特征尺寸和产生亚微米孔和线路的能力。结果显示并与使用红外和可见的飞秒激光脉冲获得的结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号